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INTRODUCTION

Oncogenic translocations involving the neurotrophic re-
ceptor tyrosine kinase genes (NTRKI, NTRK2 and
NTRK3), which encode the 3 tropomyosin receptor ki-
nases (TRKs; TRKA, TRKB, and TRKC), produce fusions
linking the NTRK kinase domain to the transcriptional
regulatory elements and upstream coding regions of
a variety of genes. These fusions lead to aberrant TRK
kinase activity, driving oncogenesis.! TRK fusions can
be targeted with TRK inhibitors (TRKis), including
larotrectinib? and entrectinib,® which are well tolerated and
effective in approximately 75% of patients with NTRK-
translocated tumors, often producing durable responses.

Acquired resistance to first-generation TRKis arises
from secondary mutations within the ATP binding
pocket of the kinase domain; these include solvent-
front substitutions, gatekeeper mutations, and xDFG-motif
substitutions in the activation loop.*® Second-
generation TRKis such as repotrectinib and seli-
trectinib overcome these resistance mechanisms by
contacting different sites within the kinase domain.®’
In a preliminary report, patients with tumors bearing
solvent-front substitutions had a response rate of 50%
to second-generation TRKis.®2 Mechanisms of resis-
tance to second-generation TRKis are not well
described.

CASE REPORT

A 47-year-old woman presented to an outside hospital
with abdominal pain and bloody diarrhea. A rectal
mass was identified and resected (Fig 1A; surgery 1
[S1]). A diagnosis of Gl stromal tumor was considered,
but immunohistochemistry was negative for c-KIT and
positive for DOG-1. At the Dana-Farber/Brigham and
Women'’s Cancer Center (DF/BWCC), a diagnosis of
unclassified sarcoma, not otherwise specified, was
made. Five months later, the patient developed
symptomatic locoregional recurrence with liver and lung
metastases, which was resected (S2). A TPM3-NTRK1
fusion was identified using 2 different next-generation

sequencing (NGS) panels (Table 1) and retrospectively
identified in S1. The patient was enrolled on a phase
trial (ClinicalTrials.gov identifier: NCT02576431) of
larotrectinib (100 mg twice a day), with an initial
objective partial response (Figs 1B and 1C). After
6 months on study, restaging scans identified an iso-
lated area of progression in the right hepatic lobe, which
was resected (S3), followed by resumption of laro-
trectinib. NGS from S3 identified an NTRKI G595R
solvent-front mutation. Three months later, diffuse
disease was noted on restaging scans (Fig 1D). An
expanded-access, single-patient protocol was initiated
using selitrectinib (100 mg twice a day) with dose es-
calated at cycle 2 to 150 mg twice a day as a result of
low plasma drug levels. A partial response was achieved
at 3 months, with dramatic reduction in fluorodeox-
yglucose uptake within the tumor (Fig 1E). After 5
months, isolated progression of a perihepatic mass was
identified and resected (S4). When a second site of
progression in the sacrum was identified 1 month later,
selitrectinib was increased to 200 mg twice a day with
an associated increase in plasma drug levels (Fig 1F).
The progressing tumor continued to grow slowly and
was resected 3 months later (Sb). Selitrectinib was
resumed postoperatively, and the patient has remained
free of disease progression for > 1 year.

MATERIALS AND METHODS
Informed Consent

Patients provided informed consent for these in-
stitutional review board-approved studies and cor-
relative analyses. We obtained all permissions required
by law and the DF/BWCC for publication.

Tumor Sequencing and Analysis

Targeted NGS was performed using the DF/BWCC
OncoPanel® or FoundationOne Heme (Foundation
Medicine, Cambridge, MA) to assess > 400 cancer-
associated genes and select translocations. RNA-seq
using single-end 75-base pair reads was performed as
previously described.!® Fastq files were aligned to
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CONTEXT

Key Objective

Mechanisms of resistance to second-generation tropomyosin receptor kinase (TRK) inhibitors are not well described.

Knowledge Generated

In this case report, we identified a gain-of-function KRAS mutation resulting in signal transduction pathway reactivation and
associated tumor progression despite continuous TRK inhibitor therapy. Changes in the tumor microenvironment were
identified, consisting of a significant increase in cytotoxic T cells and macrophages.

Relevance

These findings help define mechanisms of resistance to second-generation TRK inhibitors and suggest novel strategies to treat
resistant disease.

hgl9 using STAR,! and expression was quantified using Multiplexed Immunofluorescence
Cufflinks.™® Gene set enrichment analysis (GSEA)™” was  Tisqe-pased cyclic immunofluorescence (CyCIF) was

performed using the Hallmark, KEGG, or Reactome data- performed on formalin-fixed paraffin-embedded speci-
bases. Data are publicly available (GSE132439). GUAR- mens, as previously described,'* using qualified

DANT360 (Guardant Health, Redwood City, CA) circulating  antibodies'® listed in Appendix Table Al and uploaded to

tumor DNA (ctDNA) sequencing was also performed. cycif.org.
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FIG 1. Treatment timeline and assessments. (A) Timeline of diagnosis and therapeutic interventions. Surgeries are numbered sequentially, and boxed lettering
indicates the time of computed tomography (CT) and positron emission tomography (PET)-CT imaging. (B-E) Contrast-enhanced CT scans (top panels) and
PET-CT images (bottom panels) from patient staging scans as indicated on the timeline. (F) Plasma levels over time of selitrectinib at the indicated dose levels.
Data from each dosing point are derived from cycle 1, day 1 pharmacokinetic studies. Dashed lines indicating the 90% inhibitory concentration (ICqg) of wild-
type (WT) and G595R-mutant TRKA are shown. BID, twice a day; ctDNA, circulating tumor DNA; POD, progression of disease; S, surgery.
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Patient-Derived Models

Tumor was implanted subcutaneously into female nude
mice (NU/NU; Charles River Laboratories, Wilmington, MA)
to produce patient-derived xenografts (PDXs) following
protocols approved by the institution’s Institutional Animal
Care and Use Committee. Primary cultures were estab-
lished by generating a tumor suspension and passaging
adherent cells.

RESULTS

To explore resistance mechanisms to second-generation
TRKis, we performed targeted NGS of inhibitor-sensitive
and -resistant tumors. Compared with S3, which was
sensitive to selitrectinib, S4 harbored a PTCH1I frameshift
mutation (Table 1). PTCHI normally functions as a tumor
suppressor,'® and its inactivation promotes Hedgehog
signaling. In addition to the PTCHI mutation, S5 also
harbored a KRAS G12V mutation and variants of unknown
significance (Table 1). ctDNA sequencing after S5 failed to
detect NTRK fusions or known tumor mutations. All se-
quenced tumors exhibited a likely inactivating PTEN
rearrangement.

To characterize potential transcriptional mechanisms un-
derlying selitrectinib resistance, we analyzed S3 and S5 by
RNA-seq. A tumor from a separate patient with an ETV6-
NTRK3 translocated sarcoma was also analyzed. Com-
pared with the ETV6-NTRK3 tumor, all TPM3-NTRK1 tu-
mors exhibited exclusive expression of NTRKI exons
associated with the oncogenic fusion (Fig 2A). Similar
findings were observed in a cell line and PDX generated
from S3 and S5 (Appendix Fig A1A). Although all samples
expressed TPM3 and ETV6, only the ETV6-NTRK3 tumor
expressed detectable NTRK3 transcript (Fig 2B). The S5
tumor treated with selitrectinib expressed lower levels of the
TPM3-NTRK1 fusion transcript (Fig 2B). Using GSEA to
explore pathways associated with selitrectinib resistance,
the S5 tumor exhibited enrichment in KRAS-related sig-
naling as compared with the S3 tumor (Fig 2C), consistent
with oncogenic activation of KRAS signaling. An in-
flammatory response signature was similarly enriched in S5
compared with S3 (Fig 2D), and these gene sets showed
similar enrichment in PDXs (Appendix Figs A1B and A1C).
Through GSEA comparisons of multiple databases, S5
showed recurrent enrichment of immune- and inflammatory-
related signatures as compared with S3 (Fig 2E). To further
characterize the inflammatory infiltrate, we performed
CIBERSORT analysis'’; this showed that M1 macrophages
and CD8 T-cell subsets were enriched in the S5 tumor
(Fig 2F). Consistent with this analysis, levels for several
markers of T cells (CD8A and CD3), T-cell activation (CD48),
macrophages (CD68), and several modulators of the immune
microenvironment'® were higher in S5 (Fig 2G). Despite the
loss-of-function mutation in PTCHI, we found no evidence of
activation of the Hedgehog signaling pathway by RNA-seq
(Appendix Figs A2A and A2B).

4 © 2020 by American Society of Clinical Oncology

To further characterize the tumor microenvironment and its
organization, we performed multiplexed immunofluores-
cence imaging (CyCIF)!* of S2, S3, and S5 followed by
single-cell analysis. All tumors stained positive for TRK, with
evidence of inflammatory infiltrates in S3 and S5 (Fig 3A).
Compared with S2, S3 and, to a greater extent, S5 had
a higher density of CD45* immune cells including cytotoxic
T cells and CD68* macrophages (Fig 3B). Infiltration by
these immune cells was significantly greater in S5, in
agreement with transcriptional profiling results. Spatial
neighborhood analysis showed that S5 had more CD68*
macrophages and CD8a* T cells surrounding tumor cells as
compared with S3 (Figs 3C to 3E, Appendix Fig A3).
Moreover, spatial analysis revealed a higher density of
interfacing programmed cell death 1 (PD-1)-positive and
programmed death ligand 1 (PD-L1)-positive cells in S3
than S5 (Fig 3F-G).

DISCUSSION

We report here a patient with a TPM3-NTRKI1-driven
sarcoma that developed resistance to first- and second-
generation TRKis. The tumor initially developed resistance
to larotrectinib through an NTRKI solvent-front mutation;
resistance was overcome with the second-generation TRKi
selitrectinib. Two sites of focal progression were surgically
resected while on selitrectinib. No clear secondary onco-
genic mutation was identified in S4, and the dose of seli-
trectinib was increased to 200 mg twice a day. Isolated
progression was observed at the high drug dose, the tumor
was resected (S5), and the gain-of-function KRAS G12V
mutation was identified. Transcriptional profiling was
consistent with functional activation of KRAS signaling in
this tumor.

Dysregulation of KRAS signaling in an NTRK fusion—driven
sarcoma initially treated with effective TRKis is analogous
to the well-characterized mechanism of acquired anti—
epidermal growth factor receptor (EGFR) antibody re-
sistance in colorectal cancer. In a subset of these tumors,
KRAS mutations emerge to drive resistance to EGFR in-
hibition through reactivation of oncogenic signaling.'%2° We
speculate that consequent reactivation of signal trans-
duction pathways by mutant KRAS overcomes effective
inhibition of the NTRK fusion oncogene. Elevated levels of
TRK protein in S5 relative to S3 despite lower expression of
the fusion transcript may further suggest effective TRK
inhibition because kinase inhibition can stabilize kinase
conformation, decrease protein turnover, and prolong half-
|ife.21'22

Although the etiology of the increased inflammatory in-
filtrate in the KRAS G12V mutant tumor (S5) is unclear,
evidence from other cancer types suggests that KRAS
mutations may alter the immune microenvironment.2>24
Several targets of immuno-oncology therapies were
expressed at higher levels in S5, suggesting an alternative
means of targeting resistant disease (although the number
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FIG 2. Expression profiling of selitrectinib-sensitive and -resistant samples. (A) Plot of mapped RNA-seq reads at the NTRK1
locus for an ETV6-NTRK3 tumor and TPM3-NTRK1 tumors from surgery (S) 3 and S5. (B) Heatmap of RNA-seq data
demonstrating expression of NTRK genes and fusion partners. (C and D) Hallmark gene sets for KRAS signaling up and
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comparing S3 and S5 tumors. Immune and inflammatory gene sets are outlined in green. (F) CIBERSORT analysis of S3 and
S5 tumors showing relative leukocyte abundance. Cell types with nonzero leukocyte fraction are shown. (G) Heatmap showing
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FIG 3. Multiplexed imaging of the immune microenvironment in serial tumor resections. (A) Tissue-based
cyclic immunofluorescence images from surgery (S) 2, S3, and S5 samples demonstrating staining for
tropomyosin receptor kinase (TRK), CD45, and CD68, with lower panels representing magnified images of the
upper panels. (B) Immune cell counts, with digital images from the indicated single or multiplexed antibodies
processed as previously described.!* Cell counts were calculated frame by frame and are represented as box
plots, with the median indicated in red. (C) Global distribution of cells staining highest for TRK (contour map)
and CD68* cells (heatmap, with red indicating higher cell density) in S3 and S5. (D and E) Histograms
representing the number of CD68* or CD8a* cells neighboring TRK"&" cells. Cumulative probabilities in each
imaged frame are shown as a box plot (inset). (F) Representative staining of programmed cell death 1 (PD-1)
and programmed death ligand 1 (PD-L1) in samples S3 and S5, respectively. (G) Proximity probability of cells
staining positive for PD-1 and PD-L1, with histogram representing the number of PD-L1-positive cells
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A two-sample ttest was used to compare groups, with P values indicated; the frame numbers in each sample
are 33 (S2), 127 (S3), and 168 (S5).
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of cells expressing PD-1 and PD-L1 protein was discordant
with RNA expression, as has been observed elsewhere®®).
Furthermore, data from colorectal carcinoma suggests an
association between kinase fusions and response to
checkpoint inhibitor therapy,?® suggesting the rational
combination of TRKis and immuno-oncology therapeutics
for resistant disease.

As exemplified by this patient, treatment with second-
generation TRKis can elicit durable response®; the pa-
tient remains well > 1 year on selitrectinib after the final
resection. Imaging using ['®FIfluorodeoxyglucose positron
emission tomography may be a useful early marker of
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FIG A1. Expression profiling of NTRK translocated models. (A) Plot of mapped RNA-seq reads at the NTRKI
locus for an ETV6-NTRK3 tumor and TPM3-NTRK1 tumors from surgery (S) 3, S3 patient-derived xenograft
(PDX), S3 cell line, Sb, and S5 PDX. (B and C) Hallmark gene set for KRAS signaling up and inflammatory
response comparing S3 and S5 PDX grown in athymic, T-cell-deficient mice. FDR, false discovery rate; NES,
normalized enrichment score.
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FIG A2. Hedgehog pathway gene expression. (A) Expression of genes in the KEGG Hedgehog signaling
pathway gene set. (B) Heatmap of RNA-seq data showing expression of select genes essential to
Hedgehog cellular signaling. PDX, patient-derived xenograft; S, surgery.

FIG A3. Colocalization of CD8a* and TRK"e" cells. Global distribution of cells staining highest for tropomyosin
receptor kinase (TRK; contour map) and CD8a* cells (heatmap, with red indicating higher cell density) in
surgery (S) 3 and S5.
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TABLE A1. Antibodies Used for t-CyCIF

Case Report

Cycle No.
and Ch/ Conjugated
Filter Antibody Name  Target Protein Vendor Catalog No. Clone Fluorophore
1
488/FITC pan-TRK NTRK1/2/3 ~ Abcam, Cambridge, United ab181560 EPR17341 n/a
Kingdom
555/Cy3  antipCTD2 pCTD2(S2) Active Motif, Carlsbad, CA 61084 3E10 n/a
647/Cy5 anti-CD20 CD20 DAKO, Santa Clara, CA MO7555 L26 n/a
2
488/FITC CD4-488 CD4 R&D Systems, Minneapolis, MN FAB8165G  Polyclonal Alexa Fluor 488
555/Cy3  CD3D-555 CD3D Abcam AB208514 EP4426 Alexa Fluor 555
647/Cy5 PD1-647 PD1 Abcam AB201825 EPR4877 (2) Alexa Fluor 647
3
488/FITC Kie7-488 Kie7 CST, Danvers, MA 11882 D3B5 Alexa Fluor 488
555/Cy3  FOXP3-570 FOXP3 eBioscience, Waltham, MA 41-4777-80 236A/E7 eFluor 570
647/Cy5 PDL1-647 PD-L1/ ST 15005 E1L3N Alexa Fluor 647
CD274
4
488/FITC IBA1-488 IBA1 Abcam ab195031 EPR6136(2) Alexa Fluor 488
555/Cy3 CD68-PE CD68 CST 79594 D4B9C PE
647/Cy5 CD45-647 CD45 BioLegend, San Diego, CA 304020 HI30 Alexa Fluor 647
5
488/FITC anti-PTEN PTEN CST 9558 138G6 Zenon-488
b555/Cy3  Keratin-570 pan-Keratin ~ eBioscience 41-9003-80 AEI1/AE3 eFluor 570
647/Cy5 CD8a-660 CD8 eBioscience 50-0008-80 AMC908 eFluor 660
6
488/FITC pb3-488 p53 CST 5429 7F5 Alexa Fluor 488
555/Cy3  pH3-555 pH3(S10) CST 3475 D2C8 Alexa Fluor 555
647/Cy5  gH2ax-647 H2ax(S139)  CST 9720 20E3 Alexa Fluor 647
7
488/FITC Background
555/Cy3 Background
647/Cy5 Background
8
488/FITC pS6(S240/ pS6(240/ CST 5018 D68F8 Alexa Fluor 488
244)-488 244)
555/Cy3  VEGFR2-PE VEGFR2 CST 12634 D5B1 PE
647/Cy5  NGFR-647 NGFR/CD271 Abcam AB195180 EP1039Y Alexa Fluor 647

Abbreviations: Ch, channel; CST, Cell Signaling Technology; n/a, not applicable; PE, phycoerythrin; t-CyCIF, tissue-based cyclic
immunofluorescence.
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