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Despite initial responses1–3, most melanoma patients develop 
resistance4 to immune checkpoint blockade (ICB). To under-
stand the evolution of resistance, we studied 37 tumor 
samples over 9 years from a patient with metastatic mela-
noma with complete clinical response to ICB followed by 
delayed recurrence and death. Phylogenetic analysis revealed 
co-evolution of seven lineages with multiple convergent, but 
independent resistance-associated alterations. All recurrent 
tumors emerged from a lineage characterized by loss of chro-
mosome 15q, with post-treatment clones acquiring additional 
genomic driver events. Deconvolution of bulk RNA sequenc-
ing and highly multiplexed immunofluorescence (t-CyCIF) 
revealed differences in immune composition among different 
lineages. Imaging revealed a vasculogenic mimicry pheno-
type in NGFRhi tumor cells with high PD-L1 expression in close 
proximity to immune cells. Rapid autopsy demonstrated two 
distinct NGFR spatial patterns with high polarity and proxim-
ity to immune cells in subcutaneous tumors versus a diffuse 
spatial pattern in lung tumors, suggesting different roles of 
this neural-crest-like program in different tumor microenvi-
ronments. Broadly, this study establishes a high-resolution 
map of the evolutionary dynamics of resistance to ICB, char-
acterizes a de-differentiated neural-crest tumor population in  

melanoma immunotherapy resistance and describes 
site-specific differences in tumor–immune interactions via 
longitudinal analysis of a patient with melanoma with an 
unusual clinical course.

ICB has revolutionized cancer therapy across multiple solid 
tumor types. While 40–45% of patients with metastatic melanoma 
respond to PD-1 blockade1–3, the majority succumb due to pri-
mary, adaptive or acquired resistance4. A diverse set of resistance 
mechanisms have been identified including β-catenin activation5, 
PTEN loss6–8, loss of antigen-presentation machinery9,10, impaired 
interferon-γ responsiveness9,11, genome instability and aneu-
ploidy12,13, cell-cycle dysregulation14 and phenotype selection15–17. 
How these mechanisms emerge, interact and contribute to resis-
tance within patients remains poorly understood. Longitudinal 
tumor samples enable study of the time course of response, shed-
ding light on tumor heterogeneity18, tumor evolution and acquired 
resistance. Previous studies have demonstrated intratumoral het-
erogeneity in many solid tumor types, including melanoma19–23 and 
some studies have sequenced tumors longitudinally to examine 
evolution of resistance to chemotherapy24,25, targeted therapy26 and 
immunotherapy10,13. We generated a unique dataset of 37 longitu-
dinally collected tumors to investigate the evolution of ICB resis-
tance from a responder to ICB with eventual recurrence and death 
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from disease across 9 years, including the primary tumor, meta-
static recurrence, pre-treatment, on-treatment, post-progression 
and rapid autopsy time points. While previous efforts have focused 
on sequential tumor analysis in ICB27,28 with limited modalities (for 
example immune markers and microenvironment) or span a lim-
ited clinical timeframe, our study represents a large and in-depth 
study of tumor and microenvironmental evolution of an individ-
ual across all phases of his melanoma treatment from diagnosis 
to rapid autopsy. We performed whole-exome sequencing (WES), 
RNA sequencing (RNA-seq) and highly multiplexed protein immu-
nofluorescence (t-CyCIF; Methods, Fig. 1 and Supplementary  
Table 1). The patient’s clinical course is detailed in Fig. 1a.

Phylogenetic analysis integrating single-nucleotide variants 
and copy-number alterations (Methods) demonstrated a common 
tumor ancestor with a mutational spectrum consistent with UV 
damage, 618 shared mutations, driver hotspot mutations in IDH1 
(p.R132C) and MAP2K1 (MEK1; p.E203K) and mutations in cancer 
driver genes CTNNB1 (β-catenin; p.R582W) and ARID2 (p.P1664S) 
(Extended Data Figs. 1 and 2). No driver mutations in BRAF, NF1 
or NRAS/HRAS/KRAS were detected. All tumors shared loss of 
heterozygosity (LOH) in segments of chromosome 3q, 6q, 9, 10 
and 20 (Extended Data Fig. 3), which spanned tumor suppressors 
(CDKN2A/B; PTEN), interferon-γ pathway genes (IFNGR1; JAK2) 
and the chromatin remodeler gene ARID1B. Analysis revealed the 
coexistence and evolution of seven lineages at therapy onset, each 
having distinct genomic features (Fig. 1a,b, Extended Data Figs. 3–5 
and Supplementary Fig. 1), including whole-genome doubling, loss 
of allelic chromosomal segments and gains of mutational clusters, 
with the most recent common ancestor being the primary tumor. 
Lineage 0 (n = 1) was characterized by a genome doubling of the 
original primary clone in a recurrent lesion observed nearly 4 years 
later. All other lineages descended from a nongenome-doubled 
subclone with ten additional mutations. Lineage 1 (n = 8 tumors) 
exhibited substantial spatial and temporal heterogeneity with the 
most recent common ancestor (MRCA) the common ancestor of 
lineages 1–6 without additional distinguishing copy-number altera-
tions or mutations. Lineage 2 (n = 4) included one pre-treatment 
tumor and was characterized by an early LOH of part of chromo-
some 2q, followed by a genome doubling event in three of four 
tumors in the lineage. Lineage 3 (n = 16) included bowel and brain 
early recurrences and all subsequent treatment-resistant lesions and 
was characterized by an allelic chromosome 15q deletion. Lineage 4 
(n = 3) was limited to the head and neck and shared a cluster of nine 
distinct acquired mutations. Lineage 5 (n = 2) was found at one time 
point (day (D)29) colocated spatially and was characterized by par-
tial allelic loss of chromosome 19q. Lineage 6 (n = 2) spanned two 
skin lesions (chin, D27; left groin, D92) with six distinct acquired 
mutations. The relationships between the MRCA of each lineage are 
shown in Fig. 1b and highlight the diversity and continued evolu-
tion of melanoma within a single patient.

Across all lineages, we observed multiple genomic resistance- 
associated alterations. Nearly all tumors (33 of 37) had a homo-
zygous deletion in PTEN (Supplementary Table 1) arising from 
a common LOH of chromosome 10 with a focal deletion of a 
~500-kB region overlapping PTEN. In 19 tumors, PTEN was 
examined via immunohistochemistry (IHC) and all were nega-
tive, including two tumors without a PTEN homozygous deletion 
(Supplementary Fig. 2), suggesting multiple routes to a PTEN-null 
phenotype. Post-treatment-resistant lesions arose out of lineage 
3, distinguished by regional loss of 15q, including B2M required 
for major histocompatibility complex (MHC)-I antigen presenta-
tion10. Notably, we found four independent whole-genome duplica-
tion events: (1) in the common ancestor of three tumors (T4, T9, 
T10) in lineage 2 before ICB; (2) twice in lineage 3 (small bowel 
metastasis and brain metastasis independently) distinguishing the 
post-treatment-resistant tumors from earlier tumors in the lineage; 

and (3) in lineage 0 before ICB. Tumors with genome doubling had 
evidence of increased chromosomal instability with higher aneu-
ploidy29, which has been associated with immunotherapy resis-
tance12 (Mann–Whitney U-test, P < 0.001; Extended Data Fig. 6).

‘Early’ resistant lesions (small bowel, R1, D1028 and brain 
metastasis, R2, D1,169) showed accumulation of multiple genomic 
alterations associated with immunotherapy resistance: PTEN loss, 
15q deletion (including B2M) and genome doubling, as well as 
additional driver alterations (for example CDKN2A homozygous 
deletion). ‘Late’ resistant tumors (R3.1, R3.2 and autopsy tumors) 
descended from the small bowel (R1, D1,028) clone with CDKN2A 
homozygous deletion and demonstrated additional LOH of Chr11, 
including a frequently deleted region in melanoma30, including 
DNA damage sensor and response genes ATM and CHEK1 and epi-
genetic regulator KMT2A (Fig. 1c and Supplementary Fig. 3).

Tumors evolve in parallel with their tumor microenvironment 
(TME) and tumor mutational status provides only a partial pic-
ture. Therefore, we characterized the TME using deconvolution of 
bulk RNA-seq using single-cell-derived signatures of immune cell 
subsets17 and analysis of cyclic multiplexed immunofluorescence 
(t-CyCIF) (Methods). Relative to a large cohort of aPD-1-treated 
patients with melanoma31, these tumors had a low overall immune 
score (Extended Data Fig. 7), consistent with t-CyCIF imaging, 
demonstrating that most tumors were immunologically ‘cold’ with 
low levels of immune cells in the TME (Fig. 2a). Immune scores 
derived from RNA-seq and corresponding immune cell proportions 
inferred using t-CyCIF correlated well (Supplementary Fig. 4). We 
next examined the association of lineage with specific immune cell 
subsets. Despite relatively few samples for each lineage, we detected 
a statistically significant overall association of lineage with expres-
sion of a CD4+ T cell and regulatory T cell signatures (analysis of 
variance (ANOVA), P = 0.018, Benjamini–Hochberg false discovery 
rate q = 0.09 (adjusted for ten immune signatures), both, Fig. 2b). 
Comparing tumors in the resistant lineage (lineage 3) versus other 
lineages, we observed a trend of lower CD4+ and CD8+ T cell signa-
ture scores (Fig. 2c) with the notable exception of CD4+ regulatory 
T cells being higher in lineage 3, consistent with the hypothesis of 
a more immunosuppressive environment in the resistant lineage. 
However, with data from only three tumors in lineage 3, these 
observations were mostly not statistically significant. Examining 
changes in the TME over time (Fig. 2d), we observed higher levels 
of CD8+ effector T cells and CD4+ Foxp3 helper T cells in the imme-
diate post-IO initiation period (D27–62) compared to the later IO 
period (D76–109), particularly in the tumor border regions (Fig. 2e, 
Extended Data Figs. 7b–d and 8).

We also performed a Hallmark cancer gene set analysis, using 
single sample gene set enrichment analysis (GSEA)32 of Hallmark 
cancer gene sets33 (Methods) to characterize activity levels in sam-
ples and association with lineage and time. No individual gene 
sets were statistically significantly associated with lineage or time 
after multiple hypothesis correction (Supplementary Fig. 5a–c), 
but principal-component analysis (PCA) dimensionality reduction 
suggested clustering of lineage 2 tumors driven in part by increased 
immune activity (Supplementary Fig. 5d,e).

We then examined the relative spatial orientation and arrange-
ment of tumor and immune cell subsets across tumors using 
t-CyCIF (Supplementary Table 1; https://www.cycif.org/data/
liu-lin-2019/). We observed vascular-pattern networks consisting of 
nonendothelial lined neural-crest-like (NGFRhi) tumor cells consis-
tent with vascular mimicry (Fig. 3a and Supplementary Fig. 6)34, a 
pattern previously associated with an aggressive and therapy resis-
tant phenotype15,16,35. Clustering of single-cell t-CyCIF data (Fig. 3b 
and Methods) showed a distinct PD-L1hiNGFRhi tumor cell cluster 
(Fig. 3c and Extended Data Fig. 9a) and spatial enrichment analysis 
(Methods) showed cluster enrichment in proximity to immune cells 
(Fig. 3d). At the time of late recurrence, the patient was enrolled on 

Nature Medicine | VOL 27 | June 2021 | 985–992 | www.nature.com/naturemedicine986

https://www.cycif.org/data/liu-lin-2019/
https://www.cycif.org/data/liu-lin-2019/
http://www.nature.com/naturemedicine


LettersNATuRE MEDICInE

a trial of intralesional TLR9 agonist plus anti-PD-1 and we collected 
paired pre-treatment and post-treatment (D1,849 and D1,862) 
biopsies for direct intratumoral comparison of the nonresponsive 
target tumor (Fig. 3e). The t-CyCIF demonstrated post-treatment 

increase in immune infiltrate accompanied by an increase in the 
NGFRhiPD-L1+ tumor population (Fig. 3f and Extended Data  
Fig. 9b), with expansion of CD8+ T cells and nonlymphocytic 
immune cells (CD45+/CD3d−) as a proportion of the immune  
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Fig. 1 | Integrated clinical course and phylogenetic characterization of longitudinal tumor biopsies. a, Clinical course (top). Numbers on the timeline 
indicate days relative to initiation of ICB. Above, positron emission tomography–computed tomography images taken at (1) time of initial metastatic 
recurrence pre-ICB treatment and (2) completion of 2 years of ICB. Briefly, the patient was a 67-year-old man with stage IIB nodular melanoma treated 
with wide excision and negative sentinel lymph node biopsies that recurred 2.5 years later with widespread disease to subcutaneous lesions, lungs, lymph 
nodes and visceral lesions. He was enrolled into a trial of sequential ICB15 and had a heterogeneous response with overall rapid progressive disease on 
initial six cycles of nivolumab and again on four cycles of ipilimumab and underwent palliative radiation of bone metastases. Coinciding with maintenance 
nivolumab (D182), he experienced an abrupt, precipitous response, completing 2 total years of ICB and was considered a complete clinical responder. In 
the next year, he developed autoimmune nephritis requiring high-dose steroids and subsequently had an isolated jejunal metastasis and occipital brain 
lesion resected. Two years later, he had widespread metastatic recurrence resistant to subsequent therapy, including re-trial of nivolumab, anti-PD-1 
therapy + TLR9 agonist, carboplatin and paclitaxel and died of his disease approximately 1 year after metastatic recurrence. See Methods for full clinical 
course. Phylogenetic analysis from WES (bottom). Each dot represents a different tumor biopsy (with physical location on the figure above) and each 
colored line represents a tumor lineage with shared genomic alterations as indicated. We inferred seven different tumor lineages (labeled 0 through 6) 
pre-existing at treatment initiation. Phylogenies and lineages were inferred using point mutations (muts) and copy-number events (Methods, Extended 
Data Figs. 4 and 5 and Supplementary Fig. 1). b, Phylogenetic relationships between lineages. The most recent common ancestor (MRCA) for each lineage 
and their relationships were inferred. Distances are based on the number of different mutations, including gained and lost mutations (via deletion of 
chromosomal segments). c, Detailed phylogenetic relationships of lineage 3. The phylogenetic relationships of tumors in the resistant lineage (lineage 3) 
are depicted, with phylogenetic distance based on the number of gained and lost mutations.
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Fig. 2 | Analysis of immune microenvironment by lineage and time. Overall expression of immune cell signatures (from melanoma single-cell 
RNA-seq17) was inferred in 20 tumors with bulk RNA-seq transcriptomes and tested for association with lineage and time post-treatment. Concurrent 
t-CyCIF-assessed proportion of immune cell subsets from digital imaging and cell classification (Methods). a, Representative digital imaging of t-CyCIF. 
Tumors from pre-treatment (D−22), on-treatment (D62) and post-treatment progression (D1,028) highlight tumor cells (S100 or MITF, red), immune 
cells (CD45 or CD3d, green) and stromal cells (SMA, cyan). b, Expression of selected single-cell-derived immune cell signatures (SC SIG) by lineage. 
There was no statistically significant association between lineage and expression of overall immune cell signature (one-way ANOVA P = 0.35), but there 
was a statistically significant association with CD4+ T cell and CD4+ regulatory T cell (Treg) signatures (one-way ANOVA P = 0.018, Benjamini–Hochberg 
false discovery rate q = 0.09, both). Number of tumors per lineage, lineage 1 (n = 6); lineage 2 (n = 4); lineage 3 (n = 3); lineage 4 (n = 3); lineage 5 
(n = 2); lineage 6 (n = 2). c, Overall expression of immune and T cell signatures in resistant lineage (lineage 3) (n = 3) versus others (n = 17). Observed 
mean immune and T cell signature scores were lower in lineage 3 tumors (except CD4+ regulatory T cells, which were higher). Results were generally 
not statistically significant given small sample except naive CD8+ T cells, unadjusted two-sided Student’s t-test P = 0.004. d, Overall proportion of 
CD8+ (effector) and CD4+/FoxP3− (helper) T cells over time and region. Proportions of immune populations are shown from 34 tumors analyzed using 
t-CyCIF. Error bars represent s.e.m. e, Comparison of immune cell proportions in early versus late on-treatment time points. Early on-treatment (D27–62) 
(n = 10) versus late on-treatment (D76–109) (n = 8) tumors compare CD8+ (effector) and CD4+/FoxP3− (helper) T cell proportions in intratumoral regions 
and at tumor border. P values were calculated with unpaired, two-sided Student’s t-test and unadjusted for multiple hypotheses. Box plot limits indicate 
the interquartile range (IQR) (25th to 75th percentiles), with center line indicating the median. Whiskers show value ranges up to 1.5 × IQR above the 75th 
or below the 25th percentiles, with outliers beyond those ranges shown as individual points.
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infiltrate (Fig. 3g; Fisher’s exact test P < 0.001 for both). Finally, 
single-cell RNA-seq of the post-treatment tumor biopsy (Fig. 3h)  
confirmed the presence of an NGFRhi tumor population and GSEA 
(Methods) revealed enrichment of hypoxia, immunostimula-
tory and immunoregulatory gene sets (tumor necrosis factor-α/
transforming growth factor-β), EMT and P53 pathways in NGFRhi 
tumor cells, whereas gene sets involving oxidative phosphorylation, 
cell-cycle checkpoints and MYC targets were enriched in the NGFRlo 
cells (Fig. 3i). Separate single-cell RNA-seq of brain metastasis con-
firmed differential enrichment of these pathways between NGFRhi 
and NGFRlo tumor cells (Supplementary Fig. 7 and Supplementary 
Table 2).

To compare differences in tumor and TME between different 
tumor sites at the same time point, we performed t-CyCIF on 11 
rapid autopsy samples (Fig. 4a) and focused on differences in the 
tumor and microenvironment across the most represented meta-
static sites: lung (n = 4) and subcutaneous (n = 4) metastases. There 
were no differences in NGFRhi tumor cell proportion or CD8+ cyto-
toxic or CD4+ T helper populations between lung and subcutane-
ous sites, but there were higher frequencies of Ki67+ tumor cells 
in the lung compared to subcutaneous tumors (P = 0.003, Fig. 4b). 
Despite no quantitative differences in NGFRhi tumor cell popula-
tions between lung and subcutaneous metastatic sites, we observed 
two different spatial patterns: (1) concentration of NGFRhi cells in 
the periphery of tumor adjacent to immune cells in subcutaneous 
metastases; and (2) a more diffuse NGFRhi tumor cell distribution 
throughout the tumor in lung metastases (Fig. 4c,d). Using metrics 
of polarity and entropy to quantify these observations (Methods), 
we found that NGFRhi tumor cells had higher polarity and lower 
entropy in subcutaneous versus lung locations (Student’s t-test 
P = 0.032, P = 0.030 respectively, Fig. 4e). Consistent with poten-
tially distinct roles in immune cell response and pseudovasculariza-
tion, there was a closer spatial relationship between NGFRhi tumor 
cells and cytotoxic and T helper cells in subcutaneous tumors com-
pared to tumors in the lung (P < 8.2 × 10−11, Fig. 4f).

In this study, we report tumor-intrinsic and immune evolu-
tionary dynamics in a patient with melanoma treated with ICB. 
Using molecular and protein characterization of 37 longitudinal 
tumor samples we deduced the branched evolutionary structure, 
mapped the timing of immune escape, analyzed the immune 
microenvironment and demonstrated phenotypic selection for a 
less-differentiated, NGFRhi program in tumor cells. Seven genomic 
lineages were inferred, suggesting marked tumor heterogeneity at 
the start of therapy36 and persisting through initial therapy. Multiple 
resistance-associated alterations were identified, including PTEN 
loss6–8, genome doubling with increased aneuploidy12,13 and loss of 

antigen presentation9,10. After ICB, early recurrences demonstrated 
acquisition of multiple resistance alterations, arising out of the 
lineage with 15q deletion (including B2M) that harbored a PTEN 
homozygous deletion and additional genomic alterations, includ-
ing genome doubling and biallelic CDKN2A loss. This supports the 
concept of immune pruning of susceptible clones37,38, propagation 
of clones with intrinsic (and multiple) immune-evasive adaptations 
and suggests the insufficiency of any single alteration to intrinsi-
cally support survival and outgrowth. Notably, the clone comprising 
early brain metastasis was an evolutionary dead end, with no sub-
sequent recurrence after resection and radiation, whereas the early 
bowel metastasis clone was the ancestor to all subsequent resistant 
metastases (including brain metastases at rapid autopsy), support-
ing the possibility of disease eradication with aggressive treatment 
of oligometastases.

This patient’s clinical course was unusual, with a long interval 
between primary tumor and first metastasis, followed by rapid tumor 
growth and heterogeneous responses to ICB and abrupt clinical 
complete response for which the trigger was unknown. Preceding 
complete response was initiation of CTLA-4 checkpoint inhibitors 
and palliative radiation, suggesting the contribution of an abscopal 
effect. Additionally, the features leading to the resistant clone aris-
ing from lineage 3 (with chromosome 15q LOH including B2M) 
are not completely characterized. While RNA-seq analysis suggests 
decreased MHC-I expression in lineage 3 tumors (t-test P = 0.01, 
Extended Data Fig. 10a), there was not complete loss via t-CyCIF 
with continued tumoral HLA-A protein expression. An alternate 
hypothesis is that mutations on the deleted segment of chromo-
some 15q generated immunogenic neoantigens. We see evidence 
of decreased expression of genes coding neoantigens in lineage 3 
tumors and over time (Extended Data Fig. 10b). Finally, early recur-
rences occurred after steroid treatment for autoimmune nephritis 
followed by indolent disease progression for 2 years transitioning to 
later recurrence of more aggressive, rapidly therapy-refractory dis-
ease, suggesting that causes of persistence of the resistant clone and 
subsequent progression are multifactorial.

Previous studies have defined an NGFRhi program within a 
subset of melanoma cells in association with de-differentiation35, 
increased invasiveness and decreased proliferation16 and demon-
strated functional relevance to targeted therapy resistance15,39,40 and 
immunotherapy in vitro/in vivo41. However, a more granular assess-
ment of the NGFRhi phenotype within ICB-treated patients has 
not been demonstrated. Here, we find that the melanoma NGFRhi 
state is characterized by high PD-L1 expression and close spatial 
association with immune cells, suggesting a role in tumor–immune 
interactions, consistent with recent in vitro studies demonstrating  

Fig. 3 | Spatial and immune correlates of NGFRhi tumor cells. a, t-CyCIF vasculogenic mimicry of tumor cells. t-CyCIF of R3.2 (post-treatment lesion, 
D1,862). TX, treatment. b, t-CyCIF single-cell dimensionality reduction representation using t-stochastic neighbor embedded (t-SNE) algorithm. Cells 
from 19 tumors (D−55 through D1,028) highlighting (counter-clockwise from top left): cells from different tumors; inferred clusters using Gaussian 
mixture models (GMMs); tumor cells (S100+); immune cells (CD45+); MITFhi cells and NGFRhi cells. c, PD-L1 expression in NGFRhi tumor cells (n = 10,386) 
versus other tumor cells (n = 124,763; two-sided Student’s t-test P = 0.001, unadjusted). d, Spatial proximity: NGFRhi/MITFhi tumor cells to immune cells. 
Shaded regions cover two × s.e.m. of log fold enrichment of immune cells within a given radius. At <1,000 μm (~40–50 cell diameters), immune cells 
enrich in proximity to NGFRhi tumor cells relative to all tumor cells, but not MITFhi tumor cells (exponential regression z-test, P < 3 × 10−40). e, t-CyCIF 
from same tumor pre- (R3.1, D1,849) and post- (R3.2, D1862) treatment with TLR9 agonist plus aPD-1. Immune cells (CD45 or CD3d, green), MITFhi 
tumor cells (red), NGFRhi tumor cells (NGFR and S100, yellow) and stroma (SMA, cyan). f, Proportion of NGFRhiS100+ tumor cells (P = 8.3991 × 10−323) 
and CD45+ immune cells (P = 5.1214 × 10−62) in pre-/post-treatment tumors (two-tailed Fisher’s exact test, unadjusted). g, Immune cell composition in 
pre- and post-treatment tumors. Proportions of immune subsets inferred using t-CyCIF. There are post-treatment increases in proportion of CD8+ T cells 
(P = 4.614 × 10−76) and non-T cell immune cell subsets (P = 3.4725 × 10−43, two-tailed Fisher’s exact test, unadjusted). h, Uniform manifold approximation 
and projection (UMAP) of single-cell RNA-seq of tumor cells from R3.2 (post-treatment D1,862). NGFRhi tumor cells are highlighted using an NGFR 
program signature. i, GSEA of NGFRhi versus NGFRlo tumor cells using Hallmark gene sets46. Each point represents a gene within a gene set. Results from 
R3.2 (post-treatment D1,862) are shown and concordant with R2 (brain metastasis D1,169) (Supplementary Fig. 6 and Supplementary Table 2). Box plot 
limits indicate IQR (25th to 75th percentiles) with center line indicating the median. Whiskers show value ranges up to 1.5 × IQR above the 75th or below 
the 25th percentiles, with outliers shown as individual points. *P < 0.05; **P < 0.01; ***P < 0.001. FDR, false discovery rate; TGF, transforming growth factor; 
TNF, tumor necrosis factor.
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resistance to T cell killing in NGFRhi tumor cells41. We observe 
enrichment of hypoxia pathways in NGFRhi tumor cells and cytoar-
chitecture consistent with vascular mimicry34,42, suggesting a poten-
tial role in increasing circulation to the tumor34, regulating immune 
cell entry43 and nominating these cells as targets for therapeutic 
intervention. Our analysis describes distinct NGFRhi tumor cell 

distribution patterns in lung versus subcutaneous metastatic sites, 
potentially reflecting site-specific heterogeneity in tumor–immune 
interactions.

Whether the evolutionary dynamics of this patient’s tumor 
reflect the broader cohort of melanoma treated with ICB must be 
assessed in larger cohorts representing all melanoma genotypes and 
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reflecting the breadth of clinical heterogeneity; however, this study 
provides molecular insight into the development of immunother-
apy resistance and integrates longitudinal sequencing and imaging 
approaches to thoroughly define tumor and immune cell interac-
tions. Further efforts are ongoing, including integrating analysis 

of plasma/peripheral blood mononuclear cells44,45 in parallel with  
deep molecular analysis of the tumor, potentially affording a less 
invasive means of tumor/immune assessment longitudinally; and 
integration of additional modalities (for example epigenetic sequenc-
ing) at different scales (bulk, single cell) to dissect longitudinal  
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Fig. 4 | NGFRhi tumor and immune microenvironment by metastatic sites. a, Autopsy biopsies from metastases in lung (n = 4), subcutaneous (n = 4),  
brain (n = 2) and adrenals (n = 1). s.c., subcutaneous. b, t-CyCIF quantification of tumor and immune populations. NGFRhi or Ki67+ tumor cells were 
calculated and percentage of positive cells (over all cells quantified) are represented as box plots (left). CD8a+ (cytotoxic T cells) and CD4+/FoxP3−  
(helper T cells) were quantified (right). Unadjusted P values were calculated with two-sided Student’s t-tests between lung or s.c. sites. c, Macro-scale 
patterns of NGFR distribution in representative examples of lung and skin metastases. Red lines represent a NGFRhi tumor neighbor within 50 µm, blue lines 
indicate neighbor >50 µm distant. d, Exemplar H&E and t-CyCIF images of tumors from different anatomic locations (lung versus s.c.). Four-channel CyCIF 
images (blue, DNA; green, CD8a, CD4; red, NGFR) (right) and corresponding H&E (left). H&E, hematoxylin and eosin. e, Polarity and entropy of NGFRhi 
cells in lung versus s.c. metastases. We found higher polarity in s.c. lesions (P = 0.032) and higher entropy in the lung lesions (P = 0.030) (two-sided 
Student’s t-test, unadjusted) (Methods). f, Spatial association of NGFRhi tumor cells with immune cell populations. The log fold enrichment of immune cells  
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Whiskers show value ranges up to 1.5 × IQR above 75th or below 25th percentiles, with outliers shown as individual points.
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intrapatient heterogeneity. We anticipate that clinically contex-
tualized, longitudinal multimodal molecular analyses to dissect 
changes in the tumor and tumor microenvironment under therapy 
will enable deeper understanding of the evolution of resistance and 
tumor heterogeneity and improve outcomes by identifying new tar-
gets and informing rational combination therapies.
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Methods
Patient samples. Institutional Review Board approval was obtained before study 
enrollment and written informed consent was obtained from the patient for the 
collection of tissue and blood samples and use of medical imaging for research 
and genomic profiling, as approved by the Dana-Farber/Harvard Cancer Center 
Institutional Review Board (DF/HCC Protocol 11-181). Response was assessed 
using modified RECIST 1.1 criteria and restaging scans were performed at least 
every 3 months to assess response and progression.

Clinical history and sample context. A 67-year-old man with stage IIB nodular 
melanoma treated with wide excision and negative sentinel lymph node biopsies 
recurred 2.5 years later and staging positron emission tomography–computed 
tomography images showed widespread disease, including lymph node, lungs, 
subcutaneous and visceral lesions. He enrolled in a phase 2 trial of sequential ICB15 
and received nivolumab then ipilimumab then maintenance nivolumab. After 
six cycles of nivolumab, he had heterogeneous response to ICB (RECIST 1.1; PD, 
−17%) with overall rapid progression. He continued to progress over four cycles 
of ipilimumab and underwent palliative radiation of bone metastases. Coinciding 
with maintenance nivolumab (D182), he experienced an abrupt, precipitous 
response. Restaging scans (D221) demonstrated a partial response (RECIST 1.1, 
−45%) with continued disease regression. He completed 2 total years of ICB with 
excellent radiographic response (D753, RECIST 1.1, −73%) and was considered a 
complete clinical responder (only residual scar on imaging). Three months after 
trial completion (D831), he developed autoimmune nephritis requiring high-dose 
steroids. Six months later (D1,015), imaging revealed an isolated jejunal metastasis 
that was resected. Five months later, imaging demonstrated a new occipital brain 
lesion that was resected (D1,169) with post-operative radiation therapy. He then 
did well with no recurrence until a year and a half later when he had widespread 
metastatic recurrence. He resumed nivolumab, but progressed on therapy. He 
transitioned to a clinical trial of anti-PD-1 therapy + TLR9 agonist (D1,850) but 
progressed. Despite subsequent radiation, carboplatin and paclitaxel, the patient 
died of his disease approximately 1 year after metastatic recurrence and almost  
6 years from initiation of ICB.

Multiple rounds of palliative resection of subcutaneous lesions were performed 
during the early on-treatment phase of his clinical course and ultimately biopsies 
from 37 tumors underwent molecular characterization from the original 
primary (n = 1), pre-treatment (n = 3), on-treatment (n = 18) and post-treatment 
progression (n = 15) time points, spanning 9 years.

DNA/RNA extraction and exome sequencing. DNA extraction, whole-exome 
library preparation and sequencing was performed for samples as previously 
described25,47. Slides were cut from formalin-fixed and paraffin-embedded (FFPE) 
blocks and examined by a board-certified pathologist to select high-density cancer 
foci and ensure high purity of cancer DNA. Biopsy cores were taken from the 
corresponding tissue block for DNA/RNA extraction. DNA and RNA extraction 
was performed using QIAGEN AllPrep DNA/RNA Mini kit (no. 51306) and 
stored at −20 °C. Whole-exome capture libraries were constructed from 100 ng 
of DNA from tumor and normal tissues after sample shearing, end repair and 
phosphorylation and ligation to barcoded sequencing adaptors. Ligated DNA 
was size selected for lengths between 200–350 bp and subjected to exonic hybrid 
capture using Illumina library preps. The sample was multiplexed and sequenced 
using Illumina HiSeq technology. The Illumina exome uses Illumina’s in-solution 
DNA probe-based hybrid selection method that uses similar principles as the 
Broad Institute-Agilent Technologies developed in-solution RNA probe-based 
hybrid selection method48,49 to generate Illumina exome sequencing libraries.

Total RNA was assessed for quality using the Caliper LabChip GX2. The 
percentage of fragments with a size greater than 200 nt (DV200) was calculated 
using software. An aliquot of 200 ng of RNA was used as the input for first-strand 
complementary DNA synthesis using Illumina’s TruSeq RNA Access Library Prep 
kit. Synthesis of the second strand of cDNA was followed by indexed adaptor 
ligation. Subsequent PCR amplification enriched for adapted fragments. The 
amplified libraries were quantified using an automated PicoGreen assay.

A total of 200 ng of each cDNA library, not including controls, were combined 
into four-plex pools. Capture probes that target the exome were added and 
hybridized for recommended time. Following hybridization, streptavidin magnetic 
beads were used to capture the library-bound probes from the previous step. Two 
wash steps effectively remove any nonspecifically bound products. These same 
hybridization, capture and wash steps are repeated to assure high specificity. A 
second round of amplification enriches the captured libraries. After enrichment the 
libraries were quantified with qPCR using the KAPA Library Quantification kit for 
Illumina Sequencing Platforms and then pooled equimolarly. The entire process 
was in 96-well format and all pipetting was performed by either Agilent Bravo or 
Hamilton Starlet.

Pooled libraries were normalized to 2 nM and denatured using 0.2 N NaOH 
before sequencing. Flowcell cluster amplification and sequencing were performed 
according to the manufacturer’s protocols using either the HiSeq 2000 v3 or 
HiSeq 2500. Each run was a 76-bp paired-end with a dual eight-base index 
barcode read. Data were analyzed using the Broad Picard Pipeline, which includes 
de-multiplexing and data aggregation.

Quality control and variant calling. Initial exome sequence data processing 
and analysis were performed using a customized version of the Getz Lab 
WES analysis pipeline (https://portal.firecloud.org/#methods/getzlab/CGA_
WES_Characterization_Pipeline_v0.1_Dec2018/) at the Broad Institute. After 
alignment from the Broad Picard Pipeline, BAM files were uploaded into the Terra 
infrastructure (https://app.terra.bio), which managed intermediate analysis files 
executed by analysis pipelines.

Out of an initial 44 samples (43 tumor + 1 blood normal), all passed coverage 
(>50× mean target coverage) and contamination estimation50 (<5%) thresholds 
except the primary tumor (T1, D−1,381, 34× mean target coverage, 13% 
contamination), which we kept due to its importance in phylogenetic analysis. We 
removed 6 tumors due to low tumor purity (<10% tumor cells and no matched 
mutations in significantly mutated genes51,52), yielding 37 total tumor samples + 1 
matched blood normal for analysis. Supplementary Table 1 shows sequencing 
characteristics.

The MuTect algorithm53 was applied to identify somatic single-nucleotide 
variants in targeted exons. Strelka54 was applied to identify small insertions or 
deletions. Alterations were annotated using Oncotator55. Filters were applied 
to detect and remove known artifacts and germline variants, including DNA 
oxidation during sequencing56.

Copy-number variants. Total copy-number alterations for individual tumors 
were inferred using adaptations of a binary segmentation algorithm57,58 (CapSeg) 
comparing fractional exon coverage for tumor segments to a panel of normal 
samples, generating exomic segments and segment copy number. Copy-number 
data were inspected visually and manually for focal amplifications and deletions 
and genes were annotated with Oncotator55. For allelic copy numbers, heterozygous 
single-nucleotide polymorphisms were identified and integrated with the binary 
segmentation algorithm (Allelic CapSeg) and further adjusted for tumor purity and 
ploidy59. We then called allelic amplifications and deletions, following previously 
described criteria60 integrating segment focality and the revised allelic copy 
number.

Purity and ploidy. Purity and ploidy was estimated using the ABSOLUTE 
algorithm59, which integrates variant allele frequency distributions and 
copy-number variants (CNVs) to estimate absolute tumor purity and ploidy and 
infer cancer cell fraction (CCF), the proportion of cancer cells in the sample which 
contain each mutation. Post-purity and ploidy-corrected allelic segments were used 
to estimate allelic copy-number estimates.

Aneuploidy calculation. We used an adaptation of the weighted Genome Instability 
Index29,61 to calculate a measure of genomic aneuploidy for each sample. First, 
we used the allelic segment output to determine the median genomic allelic 
copy number (for example, one for nongenome-doubled samples and two for 
genome-doubled samples), semantically the 50th percentile of allelic copy number for 
base pairs across the genome. Then, to calculate genomic aneuploidy, we estimated 
the proportion of the genome with a different allelic copy number from this median.

Phylogenetic analysis. Two complementary approaches were taken to perform 
phylogenetic analyses: PyClone62 and PhylogicNDT63.

A comprehensive list of all called point mutations and small insertion/deletions 
found in any tumor sample was generated. For each tumor sample, the number of 
alt and reference reads, estimated CCF and purity and ploidy-corrected minor and 
major copy number at each mutation locus was generated. PyClone62 (v.0.13.1), 
a Bayesian clustering method for grouping mutations into clonal structures 
accounting for tumor purity and allelic copy numbers, was then used to generate 
clusters of mutations and their estimated CCF for each sample, given the described 
mutation inputs and tumor purity. The following default parameters were used:

base_measure_params: {alpha: 1, beta: 1}
beta_binomial_precision_params:
  prior: {rate: 0.001, shape: 1.0}
  proposal: {precision: 0.01}
  value: 1,000
concentration:
  prior: {rate: 0.001, shape: 1.0}
  value: 1.0
density: pyclone_beta_binomial
init_method: disconnected
num_iters: 10,000

A total of 31 clusters were inferred. After filtering for clusters with more than 
three mutations, 23 clusters remained (Extended Data Fig. 4a). Three informative 
patterns emerged:

(1) �Clusters with CCF ~1 in all tumors (C2, C4 and C5). Three clusters 
representing a total of 548 mutations were found at ≥0.6 CCF in all samples 
(Supplementary Fig. 5a) and likely collectively represent the ancestral clone.

(2) �Clusters with CCF ~0 in most tumors and ~1 in a few tumors (C26, C16 
and C10; Supplementary Fig. 1d,f and Extended Data Fig. 4c), suggesting a 
common ancestor for tumors containing these clusters.
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(3) �Clusters with CCF ~1 in most tumors and 0 in a few tumors (C22, C14 and 
C8; Extended Data Fig. 4b and Supplementary Fig. 1c,e), with mutations 
found in the same chromosomal segment, suggesting a common ancestor 
with deletion of the chromosomal segment containing the cluster mutations 
for tumors with inferred CCF of 0.

Hierarchical clustering was then performed using Seaborn’s clustermap 
method21–23 (default clustering using Euclidean distance and the nearest point 
algorithm for linkage between clusters) (Extended Data Fig. 5a) and seven lineages 
were inferred. Reassuringly, CNVs (that were not used to generate the lineages) 
were consistent with the inferred lineages, for example lineage 3 was inferred by 
lacking C14 composed of 20 mutations in chromosome 15q (Extended Data Fig. 4b)  
and all tumors in this lineage had a corresponding 15q LOH (Extended Data 
Fig. 3). Similarly, lineage 5 lacks C8 composed of 11 mutations in a segment of 
chromosome 19q (Supplementary Fig. 1e), which is inferred as lost in the tumors 
in lineage 5 (Extended Data Fig. 3). The four tumors (T4, T9, T10 and T12) in 
lineage 2 shared loss of chromosome 2q mutations (Supplementary Fig. 1c) and had 
an inferred partial deletion of chromosome 2q. Three of these tumors (T4, T9 and 
T10) also shared additional acquired mutations as well as a genome-doubling event.

In parallel, we used PhylogicNDT63 to reconstruct the phylogeny of metastases 
from DNA sequencing data and inferred cell fractions. PhylogicNDT implements 
a multidimensional Dirichlet process to jointly estimate cell population structure 
and genetic phylogeny across all samples, taking copy-number profiles, purity 
values and joint mutational calls. In our case, we used the posterior distribution 
on CCF values associated with each mutation (taking into account purity and 
copy-number profiles using ABSOLUTE59). PhylogicNDT Cluster and BuildTree 
were run on data from selected subsets of samples with the following default 
parameters: -rb -ni 2,000, -seed 0.

Tumor lineages defined by the PyClone/hierarchical clustering approach were 
reproduced in phylogenetic tree(s) inferred by PhylogicNDT (Supplementary  
Fig. 8a,b). The inferred phylogenetic structure of tumors within each lineage 
is shown in Supplementary Fig. 8c. We extracted inferred mutation patterns 
characterizing the MRCA of each lineage and used these ancestral patterns to infer 
the history of early lineage divergence (Fig. 1b)

Immune deconvolution from bulk transcriptomic sequencing. For RNA-seq, 
we utilized RSEM64 to quantify transcripts per kilobase million (TPM), fragments 
per kilobase million (FPKM) and reads per kilobase million (RPKM) levels 
with bowtie2 (ref. 46) as the mapper and hg19 as reference genome using default 
mapping parameters.

We inferred overall expression of 13 immune cell signatures derived from 
single-cell RNA-seq in melanoma samples as previously described17: an overall 
immune cell signature (‘IMMUNE’), a general T cell signature (‘T.CELL’), B cell 
signature (‘B.CELL’), different T cell lineages and functional subgroups  
(‘T.CD4’, ‘T.CD8’, ‘T.CD4.TREG’, ‘T.CD8.NAIVE’, ‘T.CD8.CYTOTOXIC’, ‘T.CD4.
NAIVE’, ‘T.CD8.EXHAUSTED’ and ‘T.CD4.EXHAUSTED’), NK cells (‘NK’) and 
macrophages (‘MACROPHAGE’). Briefly, genes in these signatures were derived 
by examining genes most distinct to those cell types compared to all other cells in 
single-cell samples in an unbiased fashion with subsequent expert curation. Overall 
expression was determined as an averaged normalized score of genes within each 
gene set; for each tumor. Gene expression was scored based on its normalized 
expression within the cohort of tumors. Details of signature derivation, scoring and 
code are available as previously described17.

Neoantigen inference. Neoantigen prediction was run using Polysolver65 to 
determine the patient’s human leukocyte antigen types from the blood normal 
sample. Neoantigen predictions were made using NetMHCPan 4.0 (ref. 66) from 
called mutations in each tumor and a threshold for binding affinity of <500 nM, 
within the framework of the pVAC-seq67 pipeline.

Multiplexed immunofluorescence. FFPE slides were cut at 5 µm thickness and 
mounted on a glass slide at the Pathology Core of Massachusetts General Hospital. 
Due to the extension of sample collection across treatments of the patient, 
FFPE samples were processed in three batches, as indicated in Supplementary 
Table 1. We used a recently described method, t-CyCIF, for multiplexed 
immunofluorescence68. In t-CyCIF, single-cell resolution imaging of multiple 
antigens on the same FFPE slide is achieved by an iterative process that includes 
staining, image acquisition (and storage) and inactivation of fluorophores, which 
encompasses a cycle. This cycle is repeated until all images are registered and 
signal intensities are stacked for individual cells for proteins of interest. Briefly, 
dewaxing, rehydration and pre-staining were performed on a Leica Bond RX 
automated stainer using settings described by Lin and colleagues69. Blocking was 
performed using Odyssey blocking buffer (LI-COR, cat. no. 927401). To determine 
nonspecific binding, FFPE slides were stained with three secondary antibodies 
conjugated with Alexa-647 anti-mouse (Invitrogen, cat. no. A-21236), Alexa-555 
anti-goat (Invitrogen, cat. no. A-21432) and Alexa-488 anti-rabbit (Invitrogen, cat. 
no. A-11034), followed by nuclear staining using Hoechst 33342 (Life Technologies, 
cat. no. H3570). For t-CyCIF, fluorophore-conjugated antibodies binding to S100 
(Abcam, cat. no. 207367), MITF (Abcam, cat. no. 3201), MHC-I (Abcam, cat. no. 
199837), CD3 (Dako, cat. no. A0452), phospho-RB (Santa Cruz, cat. no. 16670) 

and Ki67 (CST, cat. no. 11882) (Supplementary Data Table 3) were diluted in 
Odyssey blocking buffer and incubated for ~12 h at 4 °C in a moisture chamber, 
followed by washing in 1× phosphate-buffered saline (PBS) four times. Additional 
antibody information and dilutions used can be found in Supplementary Table 3. 
Following imaging, fluorophores were inactivated in 4.5% H2O2 and 24 mM NaOH 
in PBS for 1 h at room temperature in the presence of white light and washed 
four times in 1× PBS. Imaging was performed on a CyteFinder slide scanning 
fluorescence microscope (RareCyte) using a ×10 objective (for batch 1) and ×20 
objective (for batch 2 and 3). Background subtraction was performed using the 
previously established rolling ball algorithm (with a 50-pixel radius) in ImageJ68.  
To obtain intensity values for single cells, images were segmented using a 
previously described69 Watershed algorithm based on nuclear staining by Hoechst 
33342. To generate virtual hyper-stacked images, transformed coordinates were 
applied to images from four-channel imaging of each CyCIF cycle. The region of 
interest was defined as tissue with positive S100 staining and immediately adjacent 
normal tissue. Single-cell intensity distributions are shown as log mean intensity 
values (x axis) and cell count (y axis). Additional details on used scripts and 
protocols can be found on http://www.cycif.org/.

Gating and clustering of single-cell data using multiplex immunofluorescence. 
Single-cell data for given markers were gated using one-dimensional GMM, with 
the first mode considered as the negative population and the rest as the positive 
population. Expert manual inspection and adjustment was then applied to fine 
tune and/or correct gate values. An example of one-dimensional GMM gating can 
be found in Supplementary Fig. 9. Single-cell clustering was conducted by GMM 
using the EMGM function in the Cyt package70. Briefly, each CyCIF sample’s 
single-cell intensity data were first normalized by shifting and rescaling the 1st and 
99th percentiles of each marker to be 5,000 and 30,000 relative fluorescence units, 
respectively. Then, the inverse hyperbolic sine (asinh) function in Cyt was applied. 
For GMM clustering, several k values (from 6 to 15) were tested and k was chosen 
on the basis of concordance with visible clusters in a t-SNE visualization. The 
markers used in clustering were S100, MITF, AXL, CD45, vimentin, SMA, catenin 
and NGFR. A total of 10,000 cells from each sample were used.

Identification of tumor regions. A board-certified dermatopathologist (C.G.L.) 
reviewed t-CyCIF images and defined invasive margins of each sample. To 
heuristically define which cells belonged to intratumor regions, we first defined 
tumor cells as S100hi cells in a two-component GMM of tumor marker (S100) 
intensities in each sample. Then, a k-nearest-neighbor classifier was trained on 
cells’ xy coordinates to predict whether cells were tumor cells, for k = 25. Cells that 
this classifier predicted to be tumor cells were then defined to be in the intratumor 
regions. MATLAB code is provided in supplemental materials/methods.

Spatial enrichment analysis. Each spatial enrichment curve is defined for a tumor 
population (NGFRhi or MITFhi tumor cells from clustering) and a target population 
(for example immune cells). The curve represents the ratio of CDF curves for  
(1) pairwise distances between a chosen tumor population and a target population 
and (2) pairwise distances between a random tumor population and the target 
population. A random tumor population was defined by randomly labeling an 
equal number of tumor cells as the chosen tumor population. Each curve was 
computed by averaging results for 300 instances of random tumor populations, 
from a 10,000-cell subsample per tissue sample. Technically separated tissue pieces 
on the same slide were treated as distinct tissue samples. Differences between 
groups of curves were evaluated by fitting all curves in a group to an exponential 
and comparing fit parameters with a z-test. Fitting and confidence intervals were 
computed in MATLAB with fit(), using the Trust-Region algorithm with a manual 
initialization. Tumor population was defined as GMM clusters 3, 4, 6, 9 and 11 and 
the immune population was GMM cluster 1 (from Fig. 3b) for the analysis in Fig. 3d  
and tumor and immune populations defined by gating for the analysis in Fig. 4f.

Spatial morphology analysis of entropy and polarity. Single-cell CyCIF data 
were used to obtain the coordinates of particular cell types (for example NGFR+). 
Then, density plots of cell coordinates were converted to grayscale images on 
which Shannon entropy was computed using the MATLAB entropy() function. To 
account for global distributions and shapes of individual tumors, cell-type entropy 
was normalized by the entropy of tumor cells (S100+).

For the polarity calculation, single-cell coordinates were translated to place 
the centroid of all cell coordinates at the origin. Polarity of a specific cell type was 
defined as the net displacement of all of its cells’ coordinate vectors ⃗vi, normalized 
by cell-type count N and scale L of each tissue sample (minimum between x or y 
range of coordinates):
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Immunohistochemistry. Tissue sections were deparaffinized, rehydrated and 
blocked with 3% hydrogen peroxide. All were stained on a Bond 3 automated 
immunostainer (Leica Microsystems) and Dako Autostainer (Dako Corporation) 
using EnVision (Dako) staining reagents. Sections were incubated for 60 min 

Nature Medicine | www.nature.com/naturemedicine

http://www.cycif.org/
http://www.nature.com/naturemedicine


LettersNATuRE MEDICInE

with PTEN (BioCare Medical) or NGFR (BD Biosciences) and ERG (Abcam) and 
were then incubated with the EnVision+ Dual Link (Dako) detection reagent for 
30 min. Sections were washed and treated with a solution of diaminobenzidine and 
hydrogen peroxide (Dako) for 10 min and after rinsing, a toning solution (DAB 
Enhancer, Dako) was used for 2 min to enrich the final color.

Single-cell RNA-seq processing and analysis. A fresh tumor sample was collected 
after surgery and was dissociated within half an hour using a human tumor 
dissociation kit (Miltenyi Biotec; 130-095-929) on a gentleMACS Octo Dissociator 
(Miltenyi Biotec; 130-095-937). For the neck sample, single-cell libraries were 
prepared with Chromium Single Cell 3′ library kits using v2 chemistry (10X 
Genomics) according to the manual. For the brain sample, single cells were sorted 
into wells on the basis of CD45 and CD3 markers or absence thereof via FACS and 
lysed in a buffer containing free dNTPs and oligo(dT)-tailed oligonucleotides with 
a universal 5′-anchor sequence and processed in accordance with the standard 
Smart-seq2 protocol. Transcripts from each cell were reverse transcribed in each 
droplet (neck) or well (brain) and barcoded cDNA was amplified in bulk. The 
resulting gene expression libraries were profiled by NextSeq 500 and/or NovaSeq 
6000 systems (Illumina).

Sample de-multiplexing, barcode processing, alignment, filtering and unique 
molecular identifier counting were performed using the Cell Ranger analysis 
pipeline (v.3.1) for the neck sample. For the brain sample the cumulus/smartseq2/7 
workflow on Terra (https://portal.firecloud.org/?return=terra#methods/cumulus/
smartseq2/7) was used for preprocessing and alignment, with the GRCh38_
ens93filt reference. Downstream analyses were performed in R using the Seurat71 
package (v.3.1.0) and in Python with the scanpy package (v.1.4.4.post1)72.

For each cell, two quality control metrics were calculated: (1) the total 
number of genes detected and (2) the proportion of unique molecular identifiers 
contributed by mitochondrially encoded transcripts. Cells in which fewer than 
200 genes were detected and in which mitochondrially encoded transcripts 
constituted >20% of the total library were excluded from downstream analysis, 
yielding an expression matrix of 8,669 cells by 17,697 genes for the 10X Genomics 
neck sample and 652 cells by 33,538 genes for the Smart-seq2 brain sample. 
Each gene expression measurement was normalized by total expression within 
the corresponding cell and multiplied by a scaling factor of 10,000. Mean and 
standardized variance values were calculated for each gene across all cells and a 
subset of 5,000 highly variable genes was selected for PCA. Following PCA, UMAP 
was performed on the first 30 principal components using default parameters. 
Unsupervised clustering using the default graph-based algorithm implemented 
in Seurat (resolution parameter 0.2) identified nine distinct clusters (for the neck 
sample) and eight clusters (for the brain sample) (Supplementary Fig 7). For 
classification of cell populations, differential expression analysis was performed 
between each cluster and all other cells using a Wilcoxon rank-sum test. Clusters 
of malignant cells were identified using InferCNV with PTPRC+ cells as a reference 
population. Dimension reduction was performed on this subset of 7,844 malignant 
cells using PCA and UMAP as described above. Scoring of single cells with NGFR 
program signatures from previous literature was performed using the VISION R 
package16,73,74. In the brain sample, 220 malignant cells were characterized. In both 
samples, cutoffs for NGFRhi tumor cells (on the basis of NGFR program signatures) 
were chosen to be concordant with high NGFR single gene expression within that 
sample and we performed a GSEA comparing NGFRhi tumor cells thus defined to 
NGFRlo tumor cells.

For pre-ranked GSEA, differential expression analysis was performed between 
NGFRhi and NGFRlo cells using a Wilcoxon rank-sum test and log2 (fold change) 
was selected as a ranking metric. Pre-ranked GSEA was performed using a curated 
collection of gene sets consisting of sets from the Hallmark collection in the 
MSigDB database75.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All requests for raw and analyzed data and materials will be promptly reviewed by 
the senior author (G.M.B.) to verify whether the request is subject to any intellectual 
property or confidentiality obligations. Patient-related data not included in the 
paper may be subject to patient confidentiality. Any data and materials that can be 
shared will be released via a material transfer agreement. All analyzed sequencing 
data are in supplementary data available at the journal website and any additional 
data made publicly available after publication will be found at https://github.com/
davidliu-lab/Pt98. All t-CyCIF tissue images are available for online viewing: 
https://www.cycif.org/data/liu-lin-2019/. Raw sequencing data have been deposited 
into dbGAP, phs001427.v2.p1, which is publicly accessible. Matched clinical and 
sequencing characteristics of tumors are in Supplementary Table 1.
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Extended Data Fig. 1 | Mutation Load and Mutations in Significant Melanoma Genes. 221 nonsynonymous clonal mutations were found in all tumors, 
including hotspot mutations in IDH1 (p.R132C) and MAP2K1 (p.E203K), and additional missense mutations in cancer driver genes CTNNB1 (p.R582W) 
and ARID2 (p.P1664S).
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Extended Data Fig. 2 | Mutational Spectrum Profile of Common Ancestor. 489 common single nucleotide variants (including non-coding mutations) 
found in all tumors with mutations called individually in each sample are represented in their tri-nucleotide context; this mutational spectrum has cosine 
similarity of 0.965 with the ultraviolet DNA damage signature (Signature 7; https://cancer.sanger.ac.uk/cosmic/signatures). A similar analysis with 548 
common ancestor mutations inferred jointly by PyClone generates similar results with cosine similarity of 0.962 to the UV signature (not shown).
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Extended Data Fig. 3 | Copy Number Alterations by Lineage and Tumor. Each bar represents a tumor, with numbers indicating chromosomes and copy 
number alterations indicated by shade. Red arrows indicate the chromosomal segment loss of heterozygosity with corresponding loss of mutations in that 
segment that characterize the lineage, that is 2q for Lineage 2, 15q in Lineage 3, 19q in Lineage 5. Genome doubling is indicated by *.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Inferred Lineage-Defining Mutational Clusters and Cancer Cell Fractions by Tumor. a, Inferred Mutational Clusters and Cluster 
Cancer Cell Fraction by Tumor. Mutational clusters representing subclones and the proportion of cancer cells in each tumor sample with each mutational 
cluster was inferred using PyClone. The x-axis shows each tumor, the y-axis is the proportion of cancer cells in each sample containing the cluster, and 
the legend (n=xx) refers to the number of mutations for each inferred cluster. Only clusters containing more than 3 mutations were included (9 clusters 
excluded) in subsequent analyses. b, Mutational Cluster Defining Lineage 3. This pattern demonstrates the loss of mutations in a common ancestor of 
the seventeen tumors in Lineage 3 (T11, T21, the early escape lesions (R1 and R2) and late-emerging resistant lesions (R2 and R3.2) and the post-autopsy 
lesions). These mutations are all found in chromosome 15, with a corresponding LOH in chromosome 15q. c, Mutational Cluster Defining Early Resistant 
Small Bowel Metastasis. This cluster represents the acquired mutations shared between the small bowel metastasis (R1) and the other late resistant 
tumors which also share a bi-allelic CDKN2A deletion. 2/4 mutations were inferred to have multiplicity of 2, and 2/4 multiplicity of 1, consistent with a 
unique genome doubling event just prior to the emergence of this tumor in lineage 3, and present in all subsequent resistant tumors. These mutations were 
manually reviewed and showed no evidence of artifact, although MYO7A is detectable at a lower level in P4 than the subsequent resistant tumors.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Hierarchical Clustering of Mutational Clusters CCFs and Copy Number Alterations define concordant tumor lineages. Top: 
Hierarchically clustered heatmap of inferred cancer cell fractions (CCFs) for each mutation cluster (columns) for each tumor (rows), demonstrating 
7 different lineages. Bottom: Hierarchically clustered heatmap of large copy number alterations (columns) for each tumor (rows), demonstrating 
concordance with lineages derived from mutational clusters. Complete allelic deletions are dark blue, and copy number gains and losses are light blue.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Aneuploidy in Genome-Doubled vs. non-Genome-Doubled tumors. Aneuploidy here is defined as the proportion of the genome 
with copy number gain or loss (compared to the ‘baseline’ allelic copy number, which is 1 for non-genome doubled tumors and 2 for genome doubled 
tumors). a, Allelic copy number ratios for a representative non-genome doubled tumor (T13 from lineage 1, upper), and a genome-doubled tumor  
(R1, the jejunal metastasis from lineage 3, lower). The x axis is the genome (chromosomes in increasing number), and y represents the relative inferred 
copy number at that genomic location. b, A different representation of the inferred allelic copy from T13 and R1 demonstrating increased aneuploidy in 
the genome-doubled tumor. c, The genome doubled tumors (n=19) had evidence of chromosomal instability, with higher proportion of genome with 
aneuploidy (two-sided Mann-Whitney p=2.2e-07, Methods) compared to non-genome doubled tumors (n=18) (upper panel). Late resistant tumors 
(D1500+) had the higher aneuploidy compared to all other tumors, (lower panel). Boxplots: box limits indicate the IQR (25th to 75th percentiles), with a 
center line indicating the median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 25th percentiles, with outliers beyond those 
ranges shown as individual points.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Tumor Immune Microenvironment. a, Tumors from the patient (n=20) had lower overall immune signature score compared to a 
large cohort of PD-1 treated melanoma patients (n=121) (MWW nominal two-sided p = 0.036);. b, overall Immune signature scores in tumors biopsied 
within the first 120 days after immunotherapy initiation decreased after initiation of immune checkpoint blockade (linear regression p = 0.020). c, T cell 
signature scores in the same tumors decrease after initiation of immune checkpoint blockade (linear regression p = 0.008). d, All immune cell signature 
scores in the same tumors and their association with time after treatment. Negative coefficients are associated with a decrease in score with time after 
treatment. Boxplots: box limits indicate the IQR (25th to 75th percentiles), with a center line indicating the median. Whiskers show the value ranges up to 
1.5 × IQR above the 75th or below the 25th percentiles, with outliers beyond those ranges shown as individual points.
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Extended Data Fig. 8 | Quantification of Selected Immune and Tumor Populations from CyCIF. Selected immune cell and NGFR-high subset proportions 
over time by spatial compartment. (a) CD4 + Treg cells; (b) NGFR-high tumor cells. Error bars represent standard error of the mean (S.E.M.). Sample 
numbers for each days are: 1(day -62), 1(day -22), 4(day 4), 4(day 39), 2(day 62), 3(day 76), 3(day 92), 1(day 109), 1(day 1028), 1(day 1849), 1(day 
1862), 10(day 2065).
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Gaussian Mixture Modelling of CyCIF data. a, Heatmap demonstrating clusters of cells from Gaussian Mixture Model clustering 
characterized by a range of CyCIF quantitative fluorescence (Methods) from the 19 tumors in Batch 1. b, Heatmap demonstrating clusters of cells from 
Gaussian Mixture Model clustering characterized by a range of CyCIF quantitative fluorescence (Methods) from the pre- and post-TLR9 + antiPD1 
therapy tumors (Batch 2). (Top) There is a distinct NGFR-Hi tumor cell cluster, which is high in PD-L1 protein expression, a MITF-Hi/NGFR-lo tumor cell 
cluster, and an immune cell cluster. Several non-specific (that is non-NGFR-Hi, non-MITF-Hi) tumor cell clusters are also seen. (Bottom) There is a strong 
association between NGFR and PD-L1 expression among S100 + gated tumor cells (Pearson correlation coefficient r = 0.66 and p-value = 0, calculated by 
the default function in MATLAB).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Expression of class I and class II MHC and of clonal ancestral neoantigens in lineage 3 and over time. a, MHC-I and –II scores 
were generated from bulk RNAseq and compared between Lineage 3 tumors (n=3) and other tumors (n=17). Scores for each sample were calculated 
using an averaged standardized z-score of 6 MHC-I genes (HLA-A, HLA-B, HLA-C, B2M, TAP1, TAP2) and 13 MHC-II genes (HLA-DMA, HLA-DMB, 
HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1, HLA-DRB5). (Left) Lineage 3 has lower 
MHC-I score compared to other tumors (t-test p = 0.01). (Right) Lineage 3 tumors do not have a statistically significant difference in MHC-II score 
compared to other tumors (t-test p = 0.13). b, Expression of clonal ancestral neoantigens in lineage 3 and over time. Neoantigens were inferred using 
NetMHCPan with inputs of the patient’s HLA and mutations. 174 genes with clonal ancestral mutations that coded for neoantigens were identified, and 
their RNAseq expression (TPM) in each tumor calculated. Overall expression, Chr15 neoantigen expression (that is the expression of the 3 genes with 
clonal ancestral mutations lost with LOH of Chr15 in Lineage 3 tumors), and the proportion of the overall neoantigen expression that Chr15 neoantigen 
genes represented were calculated. Left: Lineage 3 vs other tumors. Overall expression was not different, but there was a trend towards lower expression 
and proportion of expression of Chr15 neoantigen genes in Lineage 3 tumors. Right: Expression over time in the on-treatment time period (D27-D109). 
Overall neoantigen gene expression was not different by time, but Chr15 neoantigen gene expression and the proportion of Chr15 neoantigen gene 
expression trended towards decreasing with time. Boxplots: box limits indicate the IQR (25th to 75th percentiles), with a center line indicating the  
median. Whiskers show the value ranges up to 1.5 × IQR above the 75th or below the 25th percentiles, with outliers beyond those ranges shown as 
individual points.
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