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Proteomic profiling across breast 
cancer cell lines and models
Marian Kalocsay  1,2, Matthew J. Berberich1, Robert A. Everley  1, Maulik K. Nariya1,3, 
Mirra Chung1, Benjamin Gaudio  1, Chiara Victor1, Gary A. Bradshaw  1, Robyn J. Eisert1, 
Marc Hafner  1,4, Peter K. Sorger  1 ✉, Caitlin E. Mills  1 ✉ & Kartik Subramanian  1,5 ✉

We performed quantitative proteomics on 60 human-derived breast cancer cell line models to a depth of 
~13,000 proteins. The resulting high-throughput datasets were assessed for quality and reproducibility. 
We used the datasets to identify and characterize the subtypes of breast cancer and showed that they 
conform to known transcriptional subtypes, revealing that molecular subtypes are preserved even in 
under-sampled protein feature sets. All datasets are freely available as public resources on the LINCS 
portal. We anticipate that these datasets, either in isolation or in combination with complimentary 
measurements such as genomics, transcriptomics and phosphoproteomics, can be mined for the 
purpose of predicting drug response, informing cell line specific context in models of signalling 
pathways, and identifying markers of sensitivity or resistance to therapeutics.

Background & Summary
Targeted therapy relies on the identification of actionable changes in signal transduction, proliferation or cell 
death pathways that are drivers of transformed states. In some cases, these changes are associated with a recur-
rent mutation or overexpression of an oncogene. In other cases, the causes of differences in drug sensitivity are 
less well understood. Some breast cancer subtypes are particularly responsive to targeted therapy owing to high 
expression of one or more of the estrogen (ER), progesterone (PR), or HER2 receptors. Moreover, the presence 
or absence of these receptors, which is most commonly measured by immunohistochemistry (IHC), defines 
clinical breast cancer subtype and mode of first line therapy (expression of ER and/or PR defines the hormone 
receptor (HR) positive subtype and over-expression of HER2/ERBB2 defines the HER2 positive subtype). The 
third breast cancer subtype, triple negative breast cancer (TNBC), lacks high levels of ER, PR and HER2 expres-
sion, is genetically heterogeneous and is the least effectively treated1. It is therefore of considerable interest to 
identify recurrent changes in TNBCs that might be targeted to treat disease. Breast cancers can also be classified 
into molecular subtypes based on gene expression signatures. These include the luminal A/B and basal desig-
nations that generally encompass HR positive and TNBC disease respectively, with HER2 enriched cancers 
comprising a separate molecular subtype2–4.

Multiple studies have been performed in which panels of TNBC cell lines are subjected to transcript pro-
filing to identify differences among them5,6. However, transcript levels do not necessarily correlate with the 
abundance of proteins, which are the ultimate targets of small molecule and antibody therapies7. Moreover, 
in some tumor types, the effects of copy number alterations extend to mRNA abundance without necessarily 
propagating to changes in protein abundance8. It is therefore valuable to measure the levels of proteins across 
panels of cell lines to identify changes in cell state. Of particular interest are changes that might individually or in 
combination determine sensitivity to new or existing drugs for the treatment of breast cancer. It has been shown 
that computational models of drug sensitivity that are trained using protein expression data can complement or 
even outperform models trained on transcript or genomic data alone9–11. Thus, a standardized dataset on pro-
tein expression levels in breast cancer cell lines of all three clinical subtypes is expected to constitute a valuable 
resource for drug discovery and development of predictive biomarkers.
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In this data descriptor we describe systematic profiling of 60 widely used breast cancer cell lines using 
Tandem Mass Tag (TMT) liquid chromatography mass spectrometry (LC/MS). TMT LC/MS is a method for 
labelling multiple samples (up to 11 in the current work) with mass tags and then analyzing them in parallel on 
the mass spectrometer, thereby enabling direct comparison of protein levels. In this data descriptor we provide a 
technical summary of the TMT-based mass spectrometry approach and the resulting data. Quality metrics used 
to asses both technical and biological validity are explained and we highlight the use of bridge samples to enable 
normalization and comparison of samples collected in the face of technical and methodological advances. We 
discuss how the resulting data can be leveraged to characterize preclinical (cell line) models of breast cancer, 
generate testable hypotheses of resistance to therapy and discover novel biological insight.

Methods
Culture conditions. All cell lines used in this study were of human female origin and derived from breast 
cancers except the 184A1, 184B5, MCF 10A, MCF12A and HME1 cell lines which were derived from non-ma-
lignant human breast epithelia. Cell lines were maintained, free of mycoplasma, in their recommended growth 
conditions (see Supplementary Table 1), and were identity-validated by STR profiling12.

Mass spectrometry. A schematic description of our mass spectrometry workflow is shown in Fig. 1a. Data 
were collected in 8 separate mass spectrometry sets. Because data collection spanned many months and instru-
mentation and protocols improved over this period, methods differed between batches (batch 1 includes sets 1–4 
and batch 2 includes sets 5–8) as described below.

Sample collection. Cells grown in their recommended growth medium to ~60% confluence were rinsed twice 
with phosphate-buffered saline (PBS) and then gently scraped from 15 cm dishes in PBS supplemented with pro-
tease and phosphatase inhibitors (HaltTM Protease and Phosphatase Inhibitor Single-Use Cocktail, EDTA Free, 
ThermoFisher, Catalog Number 78441) followed by centrifugation at 300 g for 5 minutes at 4 °C. The supernatant 
was discarded, and pellets were snap frozen in liquid nitrogen and stored at −80 °C.
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Fig. 1 Experimental overview (a) Mass spectrometry workflow. Cell pellets were lysed and either 65 or 150 ug  
of protein of each sample was labelled using a TMT Mass Tag Labelling Kit (see methods for details of 
differences between sets). TMT labelled samples were pooled into a single multiplexed sample and a ratio check 
was performed to ensure that an equal amount of each TMT label was included. The samples were injected into 
an Orbitrap Fusion Lumos Tribrid mass spectrometer, and TMT quantification was performed in the Orbitrap 
using SPS-MS3. Assignment of MS/MS spectra was performed using Sequest. (b) Classification of breast cancer 
cell line samples included in the study based on molecular subtype (left panel) or receptor status (right panel).
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Protein solubilisation and digestion. Cell pellets were solubilized in lysis buffer (2% SDS, 150 mM NaCl, 50 mM 
Tris pH 7.4) supplemented with Halt™ Protease and Phosphatase Inhibitor Single-Use Cocktail, EDTA Free 
(ThermoFisher, Catalog Number 78443) with a hand-held tissue homogenizer. Disulfide reduction was per-
formed by adding dithiothreitol (DTT) to a final concentration of 5 mM and heating to 37 °C for 1 hour, fol-
lowed by alkylation of cysteine residues with iodoacetamide at a final concentration of 15 mM and incubation 
at room temperature in the dark for 30 minutes. Protein concentration was determined using a Micro BCA™ 
Protein Assay Kit (ThermoFisher, Catalog Number 23235) following the manufacturer’s protocol. Detergent was 
removed by methanol/chloroform protein precipitation as follows: ice cold methanol (3 parts lysis buffer vol-
ume), chloroform (2 parts lysis buffer volume) and water (2.5 parts lysis buffer volume) were added sequentially 
with vortexing after each addition followed by centrifugation at 4000 × g for 10 min. The top layer was aspirated 
while taking care not to disrupt the interface. Ice cold methanol (3 parts lysis buffer) was added, the samples 
were vortexed, centrifuged (4000 × g, 10 min.), and the supernatant aspirated leaving behind the protein pellet; 
this methanol wash procedure was repeated a total of three times13. Precipitates were solubilized in freshly pre-
pared 8 M urea in 200 mM EPPS, pH 8.5. Following a 10 min incubation at 37 °C, the urea concentration was 
reduced by dilution with 200 mM EPPS, pH 8.5 to 4 M (sets 1–4) or 2 M (sets 5–8) final urea concentration and 
digestion was then performed by overnight incubation at room temperature in the presence of Lys-C protease 
(Wako, Catalog Number 129-02541) at an enzyme-to-substrate ratio of 1:75. Following further dilution of the 
sample with 200 mM EPPS to a final urea concentration of 1.6 M (sets 1–4) or 0.5 M (sets 5–8), digestion was 
continued by incubation of the sample at 37 °C for 6 hours with trypsin (Promega, Catalog Number V5113) at 
an enzyme to substrate ratio of 1:75. Aliquots corresponding to 65 µg per sample (sets 1–4) or 150 µg per sample 
(sets 5–8) were withdrawn for TMT labelling.

Digest check. Aliquots equivalent to 5–10 µg from two samples were pooled, desalted and peptides purified by 
reverse phase chromatography on stage tips14 (described below). The peptides were then dried and resuspended 
in 3% acetonitrile, 5% formic acid (FA) to a final concentration of ~2 µg/µl. The missed cleavage rate was meas-
ured by LC-MS/MS to evaluate the quality of the digest; a result under 15% of potential cleavage sites remaining 
uncleaved was deemed sufficient to proceed with labelling.

TMT labelling, ratio check and hplc fractionation. Equal amounts of protein were removed from each sam-
ple and labelled using a TMT10plex or TMT11plex Mass Tag Labelling Kit (ThermoFisher, Catalog Number 
A34808) (see Supplementary Table 2 for sample labeling metadata for each Set and Batch). TMT labelling effi-
ciency was measured by LC-MS3 analysis after combining equal volumes (equivalent to ~ 1 µg each) from each 
sample. At this stage a ratio check was performed in which the total peptide intensities from each sample were 
compared for equivalence. Equal amounts of labelled peptide from each sample (as judged from ratio check 
data) were then combined for subsequent fractionation in a single HPLC run (see below); each set involved a 
total amount of approximately 600 µg protein. Quenching of TMT labelling reactions was performed by adding 
hydroxylamine to a final concentration of 0.5% (v/v) and incubating samples for 15 minutes at room temper-
ature. Formic acid (FA) was added to a final volume of 2% (v/v) to lower the pH below 3.0 and samples were 
combined and de-salted using a SepPak tC18 Vac RC Cartridge (50 mg, Waters, Catalog Number WAT054960). 
HPLC fractionation was performed over a period of 75 minutes using an Agilent 1200 Series instrument with 
a flow rate of 600 µl/minute. Peptides were collected in a 96-well plate over a 65 min-gradient of 13–44%B 
with Buffer A comprising 5% acetonitrile, 10 mM ammonium bicarbonate, pH 8 and Buffer B comprising 90% 
acetonitrile, 10 mM ammonium bicarbonate, pH 8. Fractions were pooled to generate a total of 24 aliquots, fol-
lowed by sample clean-up using the Stage Tip protocol with C18 Empore™ Extraction Disks (Fisher Scientific, 
Catalog Number 14-386-2). The matrix was primed with methanol and equilibrated with 70% acetonitrile, 1% 
FA followed by washing twice with 1% FA. Samples were loaded in 1% FA, followed again by two 1% FA washes, 
and finally peptides were eluted using 70% acetonitrile, 1% FA. Samples were dried before resuspension in MS 
Loading Buffer (3% acetonitrile, 5% FA).

LC-MS. The first half of the dataset (sets 1–4) was recorded after peptide separation on 100 µm columns packed 
with 1.8 µm C18 beads with a pore size of 12 nm (Sepax Technologies Inc.). The second half of the data (sets 5–8) 
was obtained after peptide separation on 75 µm columns packed with 2.6 µm Accucore beads (Thermo Fisher 
Scientific). Peptides were injected onto 30–40 cm, 100 and 75 µm (internal diameter) columns, respectively, 
and separated using an EASY-nLC 1200 HPLC (ThermoFisher Scientific). The flow rate was 450 nl/min for the 
100 µm columns and 300 nl/min for the 75 µm columns with a gradient of 6–28%B over 170 minutes with Buffer 
A comprising 3% acetonitrile, 0.4% FA and Buffer B comprising 100% acetonitrile, 0.4% FA for the 100 µm col-
umns and 5–35%B over 240 minutes with Buffer A comprising 0.125% FA and Buffer B comprising 95% acetoni-
trile, 0.125% FA for the 75 µm columns. The columns were heated to 60 °C using a column heater (constructed 
in-house). Samples from the HPLC were injected into an Orbitrap Fusion Lumos Tribrid MS (ThermoFisher, 
Catalog Number FSN02-10000) using a multi-notch MS3 method15,16. MS scans were performed in the Orbitrap 
over a scan range of 400–1400 m/z with dynamic exclusion. Rapid rate (sets 1–4) and Turbo rate (sets 5–8) scans 
were performed in the Ion Trap with a collision energy of 35% and maximum injection times of 120 ms (sets 
1–4) and 200 ms, (sets 5–8) respectively. TMT quantification was performed using SPS-MS3 in the Orbitrap with 
a scan range of 100–1000 m/z and an HCD collision energy of 55%. Orbitrap resolution was 50,000 (dimension-
less units) with maximum injection times of 120 ms (sets 1–4) and 450 ms (sets 5–8), respectively. MS isolation 
windows were varied depending on the charge state. Additional reruns of fractions were performed for the later 
sets to achieve increased depth. Details are provided in Supplementary Table 3 including a mapping of depos-
ited.raw file names to individual sets.
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Data analysis. Mass spectrometric data (Thermo “.RAW” files) were converted to mzXML format, to cor-
rect monoisotopic m/z measurements, and to perform a post-search calibration. Peptide spectrum matches were 
assigned with SEQUEST (v.28 (rev. 12), (c) 1998–2007 Molecular Biotechnology, Univ. of Washington, J.Eng/S.
Morgan/J.Yates licensed to Thermo Fisher Scientific Inc.) based software. The quality of peptide identifications by 
SEQUEST was determined with a target-decoy approach, where each peptide spectra was searched against a com-
posite database of size-sorted forward and reverse protein sequences of the human proteome (Uniprot 02/2014) 
that also contained common contaminant proteins. For each peptide, identification scores (Xcorr, ΔCn, and pre-
cursor mass error) were computed by SEQUEST for target and decoy hits. Linear discriminant analysis that com-
bines the 3 SEQUEST identification score parameters into an optimal discriminant score was performed17,18. For 
each set, the false discovery rate (FDR) was computed as twice the number of reverse peptides identified divided 
by the total number of peptide identifications above any given discriminant score threshold19. Peptides were 
filtered to achieve an FDR <1%. During peptide assignment for all data, oxidized methionine (+15.9949 Da) 
was searched dynamically. All peptide searches considered TMT modification (+229.1629 Da) on N-termini 
and lysine residues as static modifications. For each set, the FDR for protein identification was set to <1%17, and 
shared peptides were then collapsed into proteins using rules of parsimony, i.e if a peptide could be mapped to 
multiple proteins, it was assigned only to the largest protein17. Each peptide was assigned only to one protein. 
Peptides with a total TMT value of >200 and an isolation specificity of >0.7 were included in the final dataset.

Data Records
MS proteomics Level 0 Data on peptides have been deposited to the ProteomeXchange Consortium via 
the PRIDE20 partner repository with the dataset identifier PXD026581: https://identifiers.org/pride.
project:PXD02658121.

Proteome datasets are available on Figshare: https://doi.org/10.6084/m9.figshare.c.6443633.v222 and Synapse: 
https://doi.org/10.7303/syn32672593; these data include Level 1 data on peptide intensities (Synapse ID: 
syn32672684), Level 2 data on peptide intensities normalized within and across sets (Synapse ID: syn32672825) 
and Level 3 data (Synapse ID: syn32672858) in which protein level data is derived from the mean peptide 
intensities23.

Technical Validation
Mass spectrometry instrument quality control. Quality control checks for mass spectrometry were 
incorporated at multiple points in the workflow. To test for efficient digestion of samples, defined as <15% of 
potential proteolysis sites uncleaved, a “digest check” was performed using LC-MS/MS as described in the meth-
ods section. TMT labelling efficiency aims for modification of >95% of available sites and was determined by 
LC-MS analysis via dynamic searches for N-terminal peptide modification by TMT. A “ratio check” was also 
performed using LC-MS3 to determine relative amounts of labelled peptides in each of the multiplexed samples, 
as described in the methods section. The purpose of the ratio check is to ensure equal amounts of peptide across 
all samples in a set are pooled in the sample run through the mass spectrometer.

Reproducibility of results. 73 samples (60 unique breast cancer cell lines and 13 technical or biological 
replicates) distributed across three breast cancer clinical subtypes (Fig. 1b) were randomly divided into 8 sets. 
Each set had one or more bridge samples that comprised a mixed sample derived from six cell lines (HCC1806, 
Hs578T, MCF7, MCF 10A, MDAMB231, SKBR3). By including the same bridge sample in each MS set it was 
possible to compare sets to each other (see below). A total of five biological replicates of the MCF 10A cell line 
were also present in the eight sets as a further measure of data reproducibility.

Principal component analysis (PCA) was performed prior to data normalization and revealed a signifi-
cant degree of clustering by batch (sets 1–4 versus sets 5–8). This was true despite the high overlap in proteins 
detected. We could identify two reasons for this batch effect: advances in instrumentation and analytical meth-
ods meant that later batches exhibited better signal to noise as assessed by an increase in mean intensity per pro-
tein. Samples in the second batch had a greater number of quantifiable total peptides per protein (Fig. 2a). This 
difference between the two batches may be due to the longer gradients used for peptide separation prior to MS 
analysis in the second batch (170 min for sets 1–4 versus 240 min for sets 5–8) and the fact that we re-shot some 
fractions (6 in set 6; 16 in set 7; and all 24 in set 8) in the second batch. Out of 19,000–22,000 known human 
proteins24, we measured a total of ~13,000 unique proteins in our dataset. 7197 proteins were detected in all sets 
while the remaining proteins were observed to varying degrees in different sets (Fig. 2b). In shotgun proteomics, 
there is variation in the number of proteins detected in each MS set due to under-sampling and differences from 
one sample to the next can therefore reflect both real biological variation and under-sampling. To correct for the 
differences in the number of quantifiable peptides per protein between batches, the peptide intensities in each 
sample of a set were normalized to the bridge sample for that set so that the summed peptide intensity scores 
across all samples were equivalent (within set normalization of samples Eq. 1). Next, all peptide intensities were 
normalized to the data from the bridge sample of a reference set (set 4 in this study) to allow for comparisons 
across sets and batches (Eq. 2). To account for variability in the number of peptides reported for a given protein 
across sets (Fig. 2b), intensities for each protein in a set were calculated by averaging across all peptides reported 
for that protein in any given sample of a set (Eq. 3). Finally, for each set, the normalized peptide and protein 
intensities computed in Eqs. 2 and 3 respectively were scaled to a range from 0 to 100 (Eq. 4).

 1. Within set normalization at the peptide level: Each peptide, xi in sample j and set k was normalized by 
multiplying its intensity by the ratio of the summed intensities of sample j and bridge sample (jb) in set k
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 3. Derivation of protein level data: Quantity of any protein, yl in sample j and set k was calculated by sum-
ming across all normalized peptide intensities, reported for protein yl in sample j and set k and dividing by 
the number of peptides nlk reported for protein yl in set k
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 4. Scaling of peptide and protein intensity data: Quantity of any peptide or protein in each set k was scaled to 
a value between 0 to 100 by dividing the normalized intensity of each peptide or protein xijk (calculated in 
Eqs. 2, 3 respectively) by the summed normalized intensities of protein/peptide xi across all samples j in set k:
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Fig. 2 Summary of peptides and proteins detected (a) Box and whisker plot showing the distribution of 
peptides detected per protein for each set. The box represents the first quartile, median value, and third quartile 
and the error bars represent the maximum and minimum. (b) UpSet plot to illustrate the depth in protein 
coverage for each of the eight sets and the number of overlapping proteins across them.
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Biological validation. After normalization, PCA-based clustering of the 74 samples at the peptide and pro-
tein levels showed that data for each cell line clustered by transcriptional subtype (Fig. 3a,b), suggesting that 
normalization was effective in removing batch effects and that both peptide and protein features in the data cap-
ture the intrinsic heterogeneity of the cell line panel as previously established by transcript profiling. MCF 10A 
replicates included in five sets covering both batches clustered together, another indication that any remaining 
batch effects were small (Fig. 3a,b).
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Fig. 3 Assessment of data quality (a) Principal Component Analysis (PCA) of the protein-level normalized 
dataset corrected for set-specific differences in intensities and number of peptides quantified per protein. Cells 
clustered according to their known transcriptional subtypes. (b) Principal Component Analysis (PCA) of the 
peptide-level normalized dataset. Cells clustered according to their known transcriptional subtypes. (c & d) 
Correlation between normalized protein and peptide level data of technical replicates of a single cell line (the 
non-malignant MCF 10A cell line) across five batches. HME1 is included to show contrast with another non-
malignant cell line.
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Usage Notes
Availability of data at different levels of processing. The NIH LINCS program has defined different 
data levels for all data, including proteomics, that comprise: Level 0 (primary or raw;.raw files and mzXML files 
in the case of MS data), Level 1 (relative peptide level intensities reported for each set), Level 2 (batch normalized 
peptide intensities reported for each set), Level 3 (sub-threshold proteinand contaminant proteins removed, and 
batch normalized) and Level 4 (signatures and markers of response)25 (these data levels are described in detail 
in the accompanying overview manuscript). Level 0 data for the current study are available for download from 
the Pride repository (PXD026581)21. Level 1 (available on Synapse: syn3267268423) data were generated using 
software provided by the Gygi Laboratory at HMS and comprise peptide level estimates. The peptide intensity 
estimates in Level 1 were normalized using bridge samples to make cross-set and cross batch comparisons pos-
sible, followed by calculation of protein level estimates (Level 2 and 3 data available on Synapse: syn32672825 
& syn3267285823, respectively). Level 1 datasets can also be generated by users from the Level 0 raw data using 
MaxQuant26. While Level 2 data can either be generated from Level 1 data as described using Eqs. (1–4) or with 
packages like FragPipe27.

Comparison of peptide and protein level datasets. Across the 8 sets in our study, we identified 
135,970 unique peptides that mapped to ~13,000 proteins, 7200 of which were common across all sets. However, 
only 25,925 peptides that mapped to 4820 proteins were found to be common across all sets. Therefore, for ~2380 
proteins identified in common across the entire study, the underlying peptide or peptides used to make the quan-
tification differed across sets. A caveat of deriving protein intensities by averaging normalized peptide intensities 
is that it relies on the assumption that different peptides used to quantify a protein are quantitatively similar and 
comparable28. To assess if this is a reasonable assumption to make for this dataset, we compared the correlation 
across the 5 non-malignant MCF 10A replicates and the non-malignant hME1 cell line model using either nor-
malized protein or peptide level measurements found in common across all 8 sets (Fig. 3c). At the peptide level, 
the mean correlation coefficient between the 5 non-malignant MCF 10A replicates was 0.708 compared to a 
mean correlation coefficient of 0.719 at the protein level. In contrast, the mean correlation coefficient between 
any MCF 10A sample and the non-malignant hME1 model was 0.37 using peptide level data and 0.31 using pro-
tein level data. In addition; both peptide level and protein level data cluster by subtype in PCA space (Fig. 3a,b). 
Therefore, both peptide level and protein level quantification effectively discriminate between cell line models of 
the same subtype and retain correlation between technical replicates. We conclude that protein-level quantifica-
tion from disparate peptides is a reasonable approach that allows for greater data retention (7200 vs 4820 unique 
proteins) and that meaningful comparisons can be made in relative protein abundance even if different peptides 
were detected in different sets. Both peptide-level and protein level normalized versions of the data (level 2 & 3 
data) are available for download.

Application to drug response studies. Genomic and transcriptomic data have frequently been used to 
predict drug response and identify potential predictors or determinants of drug sensitivity29–31. As a first step in 
determining the utility of protein expression data in predicting drug response, we measured the responses of 56 
breast cancer cell lines to the CDK4/6 inhibitor palbociclib (available on the LINCS database https://lincs.hms.
harvard.edu/db/datasets/20343). Using the relative abundance for each of the 7197 proteins measured in all cell 
lines, we built univariate linear models to predict response (area over the GR curve) to palbociclib. The model 
included receptor status as a covariate to account for subtype specific differences in protein expression (The ‘lm’ 
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0.0 0.4 0.8
Effect size

v

Predicting response to palbociclib from 
baseline protein expression data

Fig. 4 Prediction of breast cancer cell line response palbociclib treatment Volcano plot (-log10 (p-value) 
against Effect size) shows the relative strength of each of the 7197 proteins in predicting breast cancer cell line 
response (GR AOC) to palbociclib. Negative effect size is associated with drug resistance and positive effect size 
is associated with sensitivity.
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package in R was used to encode the linear models using the formula “palbociclib GR AOC ~ protein expres-
sion + receptor status”) (Fig. 4). As expected, the abundance of RB1, a key substrate of CDK4/6 and mediator 
of cell cycle arrest32, was among the strongest predictors of response to palbociclib (p-value = 5.9e-06) and was 
positively correlated with increased sensitivity. In contrast, expression of CBX2 was correlated with resistance to 
palbociclib (p-value = 2.5e-06). Overexpression of CBX2, a protein involved in DNA damage repair and chroma-
tin homeostasis33,34, has been associated with upregulation of genes involved in cell cycle progression and worse 
5-year survival in breast cancer patients35. The association of CBX2 expression with resistance to palbociclib 
in cell lines provides a rationale for considering it as a potential biomarker in humans and a possible therapeu-
tic target to overcome resistance to CDK4/6 inhibitors. This preliminary analysis suggests that baseline protein 
expression in untreated cell line models can be used to generate testable hypotheses about factors that influence 
drug sensitivity and resistance.

Code availability
Computational tools to process data and plot figures shown in the paper are available on https://github.com/
labsyspharm/lincs_proteomics_data_descriptor and https://github.com/datarail/msda.
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